L(s) = 1 | + (0.951 − 0.309i)5-s + (0.5 + 0.363i)13-s + (0.363 + 1.11i)17-s + (0.809 − 0.587i)25-s + (−0.363 + 1.11i)29-s + (1.30 + 0.951i)37-s + (−1.53 − 1.11i)41-s + 49-s + (0.587 − 1.80i)53-s + (−0.5 + 0.363i)61-s + (0.587 + 0.190i)65-s + (0.5 − 0.363i)73-s + (0.690 + 0.951i)85-s + (−0.951 + 0.690i)89-s + (0.5 − 1.53i)97-s + ⋯ |
L(s) = 1 | + (0.951 − 0.309i)5-s + (0.5 + 0.363i)13-s + (0.363 + 1.11i)17-s + (0.809 − 0.587i)25-s + (−0.363 + 1.11i)29-s + (1.30 + 0.951i)37-s + (−1.53 − 1.11i)41-s + 49-s + (0.587 − 1.80i)53-s + (−0.5 + 0.363i)61-s + (0.587 + 0.190i)65-s + (0.5 − 0.363i)73-s + (0.690 + 0.951i)85-s + (−0.951 + 0.690i)89-s + (0.5 − 1.53i)97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 - 0.125i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 - 0.125i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.594064172\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.594064172\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.951 + 0.309i)T \) |
good | 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.363 - 1.11i)T + (-0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 29 | \( 1 + (0.363 - 1.11i)T + (-0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-1.30 - 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (1.53 + 1.11i)T + (0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.587 + 1.80i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 71 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 + (0.951 - 0.690i)T + (0.309 - 0.951i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.668696506000398616925272175740, −8.265518034654307971162576259352, −7.12969423379416463816538891214, −6.46419308067215950710019707813, −5.73975904881608301088607925188, −5.10799914583940680299134860673, −4.12413853528229830089024336842, −3.25419083630248390471470741724, −2.09305214864547005799939317100, −1.30301573505290493334194794509,
1.11163318493477804693663045786, 2.33358185009805151896897495565, 3.02422925508412039151182589695, 4.08819744614148339583495377159, 5.07773739855096311175060755054, 5.78383123196327227248882909851, 6.37149469470094542429778690296, 7.25324316265774580586396200633, 7.899422566098455873826317856392, 8.846425148562110702671860661194