Properties

Label 2-60984-1.1-c1-0-51
Degree $2$
Conductor $60984$
Sign $-1$
Analytic cond. $486.959$
Root an. cond. $22.0671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 7-s + 6·13-s + 2·17-s − 4·19-s + 2·23-s − 25-s − 8·29-s + 4·31-s − 2·35-s − 6·37-s − 10·41-s + 4·43-s − 4·47-s + 49-s − 4·53-s − 12·59-s + 2·61-s + 12·65-s + 12·67-s + 6·71-s + 2·73-s + 8·79-s + 4·85-s − 14·89-s − 6·91-s − 8·95-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.377·7-s + 1.66·13-s + 0.485·17-s − 0.917·19-s + 0.417·23-s − 1/5·25-s − 1.48·29-s + 0.718·31-s − 0.338·35-s − 0.986·37-s − 1.56·41-s + 0.609·43-s − 0.583·47-s + 1/7·49-s − 0.549·53-s − 1.56·59-s + 0.256·61-s + 1.48·65-s + 1.46·67-s + 0.712·71-s + 0.234·73-s + 0.900·79-s + 0.433·85-s − 1.48·89-s − 0.628·91-s − 0.820·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 60984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60984 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(60984\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(486.959\)
Root analytic conductor: \(22.0671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 60984,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 + 4 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.38687803686912, −13.92614674557200, −13.58731785341869, −13.04068442602941, −12.71983626531487, −12.08960691506131, −11.36093154236952, −10.97815583674464, −10.49179516871130, −9.883377019094807, −9.512478117993125, −8.849209155542049, −8.478101789024329, −7.894859922815364, −7.156571512698862, −6.454076794830823, −6.238333075808200, −5.614410368918535, −5.115336976424993, −4.322564172845347, −3.514156386564112, −3.341259163136066, −2.258526358276191, −1.751347860486603, −1.076141521045050, 0, 1.076141521045050, 1.751347860486603, 2.258526358276191, 3.341259163136066, 3.514156386564112, 4.322564172845347, 5.115336976424993, 5.614410368918535, 6.238333075808200, 6.454076794830823, 7.156571512698862, 7.894859922815364, 8.478101789024329, 8.849209155542049, 9.512478117993125, 9.883377019094807, 10.49179516871130, 10.97815583674464, 11.36093154236952, 12.08960691506131, 12.71983626531487, 13.04068442602941, 13.58731785341869, 13.92614674557200, 14.38687803686912

Graph of the $Z$-function along the critical line