Properties

Label 2-60984-1.1-c1-0-33
Degree $2$
Conductor $60984$
Sign $1$
Analytic cond. $486.959$
Root an. cond. $22.0671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 7-s + 4·13-s − 4·17-s + 8·19-s + 3·23-s + 4·25-s − 4·29-s + 5·31-s − 3·35-s + 11·37-s + 4·43-s + 4·47-s + 49-s + 10·53-s − 3·59-s + 12·61-s + 12·65-s − 5·67-s + 9·71-s + 16·73-s + 8·79-s + 12·83-s − 12·85-s + 13·89-s − 4·91-s + 24·95-s + ⋯
L(s)  = 1  + 1.34·5-s − 0.377·7-s + 1.10·13-s − 0.970·17-s + 1.83·19-s + 0.625·23-s + 4/5·25-s − 0.742·29-s + 0.898·31-s − 0.507·35-s + 1.80·37-s + 0.609·43-s + 0.583·47-s + 1/7·49-s + 1.37·53-s − 0.390·59-s + 1.53·61-s + 1.48·65-s − 0.610·67-s + 1.06·71-s + 1.87·73-s + 0.900·79-s + 1.31·83-s − 1.30·85-s + 1.37·89-s − 0.419·91-s + 2.46·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 60984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60984 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(60984\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(486.959\)
Root analytic conductor: \(22.0671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 60984,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.411239753\)
\(L(\frac12)\) \(\approx\) \(4.411239753\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 - 11 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 - 12 T + p T^{2} \)
67 \( 1 + 5 T + p T^{2} \)
71 \( 1 - 9 T + p T^{2} \)
73 \( 1 - 16 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 13 T + p T^{2} \)
97 \( 1 + 3 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.00616521367803, −13.69169976496007, −13.44176488303265, −12.97958576051410, −12.36872975887050, −11.69849140074699, −11.13322173793258, −10.82751155816000, −10.06109470603841, −9.656175001673583, −9.216290387882524, −8.864965021851389, −8.066410772810019, −7.525815493660683, −6.793438295742230, −6.363637383743294, −5.871659809536131, −5.358355094747904, −4.830709312659010, −3.925157978258333, −3.460431587984771, −2.521862058810849, −2.286617958090664, −1.181481867154806, −0.8287882173918323, 0.8287882173918323, 1.181481867154806, 2.286617958090664, 2.521862058810849, 3.460431587984771, 3.925157978258333, 4.830709312659010, 5.358355094747904, 5.871659809536131, 6.363637383743294, 6.793438295742230, 7.525815493660683, 8.066410772810019, 8.864965021851389, 9.216290387882524, 9.656175001673583, 10.06109470603841, 10.82751155816000, 11.13322173793258, 11.69849140074699, 12.36872975887050, 12.97958576051410, 13.44176488303265, 13.69169976496007, 14.00616521367803

Graph of the $Z$-function along the critical line