Properties

Label 2-60840-1.1-c1-0-36
Degree $2$
Conductor $60840$
Sign $-1$
Analytic cond. $485.809$
Root an. cond. $22.0410$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4·7-s − 2·17-s + 25-s + 2·29-s + 4·31-s − 4·35-s − 6·37-s − 6·41-s + 4·43-s − 4·47-s + 9·49-s + 10·53-s − 2·61-s − 8·67-s + 4·71-s + 6·73-s − 8·79-s + 8·83-s − 2·85-s − 6·89-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.51·7-s − 0.485·17-s + 1/5·25-s + 0.371·29-s + 0.718·31-s − 0.676·35-s − 0.986·37-s − 0.937·41-s + 0.609·43-s − 0.583·47-s + 9/7·49-s + 1.37·53-s − 0.256·61-s − 0.977·67-s + 0.474·71-s + 0.702·73-s − 0.900·79-s + 0.878·83-s − 0.216·85-s − 0.635·89-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(60840\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(485.809\)
Root analytic conductor: \(22.0410\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 60840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
13 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.52551102788331, −13.86520696417223, −13.49176381933956, −13.13608553494924, −12.58774185380268, −12.04346548131778, −11.69784317348999, −10.74197772280449, −10.50339639919068, −9.852385906430501, −9.560418512511243, −8.901236736375157, −8.529596153923905, −7.794701461033636, −6.965707771720678, −6.770974255763822, −6.163157424442823, −5.675895737916658, −5.003351880734074, −4.331610600715684, −3.630067736976559, −3.094205519612252, −2.517125924883022, −1.792146649560747, −0.8286008540299335, 0, 0.8286008540299335, 1.792146649560747, 2.517125924883022, 3.094205519612252, 3.630067736976559, 4.331610600715684, 5.003351880734074, 5.675895737916658, 6.163157424442823, 6.770974255763822, 6.965707771720678, 7.794701461033636, 8.529596153923905, 8.901236736375157, 9.560418512511243, 9.852385906430501, 10.50339639919068, 10.74197772280449, 11.69784317348999, 12.04346548131778, 12.58774185380268, 13.13608553494924, 13.49176381933956, 13.86520696417223, 14.52551102788331

Graph of the $Z$-function along the critical line