Properties

Label 2-6080-1.1-c1-0-74
Degree $2$
Conductor $6080$
Sign $-1$
Analytic cond. $48.5490$
Root an. cond. $6.96771$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.44·3-s + 5-s − 2.92·7-s − 0.917·9-s − 4.55·11-s + 1.15·13-s − 1.44·15-s + 5.35·17-s + 19-s + 4.22·21-s − 6.10·23-s + 25-s + 5.65·27-s + 5.09·29-s + 1.54·31-s + 6.57·33-s − 2.92·35-s + 8.92·37-s − 1.66·39-s − 2.88·41-s + 7.86·43-s − 0.917·45-s + 7.58·47-s + 1.55·49-s − 7.73·51-s − 4.48·53-s − 4.55·55-s + ⋯
L(s)  = 1  − 0.833·3-s + 0.447·5-s − 1.10·7-s − 0.305·9-s − 1.37·11-s + 0.320·13-s − 0.372·15-s + 1.29·17-s + 0.229·19-s + 0.921·21-s − 1.27·23-s + 0.200·25-s + 1.08·27-s + 0.945·29-s + 0.276·31-s + 1.14·33-s − 0.494·35-s + 1.46·37-s − 0.266·39-s − 0.450·41-s + 1.19·43-s − 0.136·45-s + 1.10·47-s + 0.222·49-s − 1.08·51-s − 0.615·53-s − 0.614·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6080\)    =    \(2^{6} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(48.5490\)
Root analytic conductor: \(6.96771\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
19 \( 1 - T \)
good3 \( 1 + 1.44T + 3T^{2} \)
7 \( 1 + 2.92T + 7T^{2} \)
11 \( 1 + 4.55T + 11T^{2} \)
13 \( 1 - 1.15T + 13T^{2} \)
17 \( 1 - 5.35T + 17T^{2} \)
23 \( 1 + 6.10T + 23T^{2} \)
29 \( 1 - 5.09T + 29T^{2} \)
31 \( 1 - 1.54T + 31T^{2} \)
37 \( 1 - 8.92T + 37T^{2} \)
41 \( 1 + 2.88T + 41T^{2} \)
43 \( 1 - 7.86T + 43T^{2} \)
47 \( 1 - 7.58T + 47T^{2} \)
53 \( 1 + 4.48T + 53T^{2} \)
59 \( 1 - 2.09T + 59T^{2} \)
61 \( 1 + 1.59T + 61T^{2} \)
67 \( 1 + 3.73T + 67T^{2} \)
71 \( 1 - 3.73T + 71T^{2} \)
73 \( 1 + 9.81T + 73T^{2} \)
79 \( 1 + 4.60T + 79T^{2} \)
83 \( 1 - 9.89T + 83T^{2} \)
89 \( 1 - 1.91T + 89T^{2} \)
97 \( 1 + 15.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79363601827299196102968721349, −6.82180007204278855254192920525, −6.03155549778138934193702723083, −5.78143501734353911520900110531, −5.08165613359732927637566363841, −4.09110844312968179117005902185, −3.01718865841320761580297928580, −2.56047966093840703856909768037, −1.04657780811973872249637253920, 0, 1.04657780811973872249637253920, 2.56047966093840703856909768037, 3.01718865841320761580297928580, 4.09110844312968179117005902185, 5.08165613359732927637566363841, 5.78143501734353911520900110531, 6.03155549778138934193702723083, 6.82180007204278855254192920525, 7.79363601827299196102968721349

Graph of the $Z$-function along the critical line