| L(s) = 1 | − 3.45·3-s + 5-s − 4.18·7-s + 8.96·9-s + 1.91·11-s + 5.31·13-s − 3.45·15-s − 6.96·17-s + 19-s + 14.4·21-s + 2.55·23-s + 25-s − 20.6·27-s − 2.90·29-s − 4.26·31-s − 6.63·33-s − 4.18·35-s − 6.07·37-s − 18.3·39-s − 6.91·41-s + 3.64·43-s + 8.96·45-s − 6.29·47-s + 10.5·49-s + 24.0·51-s + 12.7·53-s + 1.91·55-s + ⋯ |
| L(s) = 1 | − 1.99·3-s + 0.447·5-s − 1.58·7-s + 2.98·9-s + 0.578·11-s + 1.47·13-s − 0.893·15-s − 1.68·17-s + 0.229·19-s + 3.15·21-s + 0.533·23-s + 0.200·25-s − 3.96·27-s − 0.539·29-s − 0.766·31-s − 1.15·33-s − 0.707·35-s − 0.999·37-s − 2.94·39-s − 1.08·41-s + 0.556·43-s + 1.33·45-s − 0.917·47-s + 1.50·49-s + 3.37·51-s + 1.74·53-s + 0.258·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 19 | \( 1 - T \) |
| good | 3 | \( 1 + 3.45T + 3T^{2} \) |
| 7 | \( 1 + 4.18T + 7T^{2} \) |
| 11 | \( 1 - 1.91T + 11T^{2} \) |
| 13 | \( 1 - 5.31T + 13T^{2} \) |
| 17 | \( 1 + 6.96T + 17T^{2} \) |
| 23 | \( 1 - 2.55T + 23T^{2} \) |
| 29 | \( 1 + 2.90T + 29T^{2} \) |
| 31 | \( 1 + 4.26T + 31T^{2} \) |
| 37 | \( 1 + 6.07T + 37T^{2} \) |
| 41 | \( 1 + 6.91T + 41T^{2} \) |
| 43 | \( 1 - 3.64T + 43T^{2} \) |
| 47 | \( 1 + 6.29T + 47T^{2} \) |
| 53 | \( 1 - 12.7T + 53T^{2} \) |
| 59 | \( 1 - 5.24T + 59T^{2} \) |
| 61 | \( 1 - 3.37T + 61T^{2} \) |
| 67 | \( 1 - 8.20T + 67T^{2} \) |
| 71 | \( 1 - 16.3T + 71T^{2} \) |
| 73 | \( 1 + 3.30T + 73T^{2} \) |
| 79 | \( 1 - 1.02T + 79T^{2} \) |
| 83 | \( 1 - 4.34T + 83T^{2} \) |
| 89 | \( 1 + 1.45T + 89T^{2} \) |
| 97 | \( 1 + 8.51T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.13832429975688783063695639517, −6.67152215524700400964152915263, −6.42258198144627225875736467050, −5.67695998865017299867743634689, −5.11839359458643748205095198204, −4.01733316977681696822075586669, −3.59653785666892968412569029625, −2.03248822447565315694162862740, −0.995969963375127349746630382408, 0,
0.995969963375127349746630382408, 2.03248822447565315694162862740, 3.59653785666892968412569029625, 4.01733316977681696822075586669, 5.11839359458643748205095198204, 5.67695998865017299867743634689, 6.42258198144627225875736467050, 6.67152215524700400964152915263, 7.13832429975688783063695639517