| L(s) = 1 | − 3-s − 5-s − 3·7-s − 2·9-s − 5·13-s + 15-s − 3·17-s − 19-s + 3·21-s − 7·23-s + 25-s + 5·27-s + 29-s − 2·31-s + 3·35-s − 2·37-s + 5·39-s − 10·41-s − 6·43-s + 2·45-s − 8·47-s + 2·49-s + 3·51-s − 9·53-s + 57-s + 5·59-s − 4·61-s + ⋯ |
| L(s) = 1 | − 0.577·3-s − 0.447·5-s − 1.13·7-s − 2/3·9-s − 1.38·13-s + 0.258·15-s − 0.727·17-s − 0.229·19-s + 0.654·21-s − 1.45·23-s + 1/5·25-s + 0.962·27-s + 0.185·29-s − 0.359·31-s + 0.507·35-s − 0.328·37-s + 0.800·39-s − 1.56·41-s − 0.914·43-s + 0.298·45-s − 1.16·47-s + 2/7·49-s + 0.420·51-s − 1.23·53-s + 0.132·57-s + 0.650·59-s − 0.512·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 2 | \( 1 \) | |
| 5 | \( 1 + T \) | |
| 19 | \( 1 + T \) | |
| good | 3 | \( 1 + T + p T^{2} \) | 1.3.b |
| 7 | \( 1 + 3 T + p T^{2} \) | 1.7.d |
| 11 | \( 1 + p T^{2} \) | 1.11.a |
| 13 | \( 1 + 5 T + p T^{2} \) | 1.13.f |
| 17 | \( 1 + 3 T + p T^{2} \) | 1.17.d |
| 23 | \( 1 + 7 T + p T^{2} \) | 1.23.h |
| 29 | \( 1 - T + p T^{2} \) | 1.29.ab |
| 31 | \( 1 + 2 T + p T^{2} \) | 1.31.c |
| 37 | \( 1 + 2 T + p T^{2} \) | 1.37.c |
| 41 | \( 1 + 10 T + p T^{2} \) | 1.41.k |
| 43 | \( 1 + 6 T + p T^{2} \) | 1.43.g |
| 47 | \( 1 + 8 T + p T^{2} \) | 1.47.i |
| 53 | \( 1 + 9 T + p T^{2} \) | 1.53.j |
| 59 | \( 1 - 5 T + p T^{2} \) | 1.59.af |
| 61 | \( 1 + 4 T + p T^{2} \) | 1.61.e |
| 67 | \( 1 + T + p T^{2} \) | 1.67.b |
| 71 | \( 1 + 12 T + p T^{2} \) | 1.71.m |
| 73 | \( 1 + 13 T + p T^{2} \) | 1.73.n |
| 79 | \( 1 - 6 T + p T^{2} \) | 1.79.ag |
| 83 | \( 1 - 18 T + p T^{2} \) | 1.83.as |
| 89 | \( 1 - 2 T + p T^{2} \) | 1.89.ac |
| 97 | \( 1 + 14 T + p T^{2} \) | 1.97.o |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.23053480917093813693708890180, −6.55243039164579078583166398238, −6.10282816529836993409231380538, −5.15247308170371826534932444932, −4.57985215459661358845919225949, −3.55024852182303484755977228372, −2.89058005697688479557220748429, −1.91091536635507326584525942577, 0, 0,
1.91091536635507326584525942577, 2.89058005697688479557220748429, 3.55024852182303484755977228372, 4.57985215459661358845919225949, 5.15247308170371826534932444932, 6.10282816529836993409231380538, 6.55243039164579078583166398238, 7.23053480917093813693708890180