Properties

Label 2-6080-1.1-c1-0-142
Degree $2$
Conductor $6080$
Sign $1$
Analytic cond. $48.5490$
Root an. cond. $6.96771$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 3·7-s − 2·9-s − 5·13-s + 15-s − 3·17-s − 19-s + 3·21-s − 7·23-s + 25-s + 5·27-s + 29-s − 2·31-s + 3·35-s − 2·37-s + 5·39-s − 10·41-s − 6·43-s + 2·45-s − 8·47-s + 2·49-s + 3·51-s − 9·53-s + 57-s + 5·59-s − 4·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 1.13·7-s − 2/3·9-s − 1.38·13-s + 0.258·15-s − 0.727·17-s − 0.229·19-s + 0.654·21-s − 1.45·23-s + 1/5·25-s + 0.962·27-s + 0.185·29-s − 0.359·31-s + 0.507·35-s − 0.328·37-s + 0.800·39-s − 1.56·41-s − 0.914·43-s + 0.298·45-s − 1.16·47-s + 2/7·49-s + 0.420·51-s − 1.23·53-s + 0.132·57-s + 0.650·59-s − 0.512·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6080\)    =    \(2^{6} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(48.5490\)
Root analytic conductor: \(6.96771\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 6080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 3 T + p T^{2} \) 1.17.d
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.23053480917093813693708890180, −6.55243039164579078583166398238, −6.10282816529836993409231380538, −5.15247308170371826534932444932, −4.57985215459661358845919225949, −3.55024852182303484755977228372, −2.89058005697688479557220748429, −1.91091536635507326584525942577, 0, 0, 1.91091536635507326584525942577, 2.89058005697688479557220748429, 3.55024852182303484755977228372, 4.57985215459661358845919225949, 5.15247308170371826534932444932, 6.10282816529836993409231380538, 6.55243039164579078583166398238, 7.23053480917093813693708890180

Graph of the $Z$-function along the critical line