Properties

Label 2-6080-1.1-c1-0-140
Degree $2$
Conductor $6080$
Sign $-1$
Analytic cond. $48.5490$
Root an. cond. $6.96771$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.76·3-s + 5-s + 4.62·7-s + 0.103·9-s − 5.52·11-s − 5.49·13-s + 1.76·15-s − 6.62·17-s − 19-s + 8.14·21-s − 4.14·23-s + 25-s − 5.10·27-s + 7.87·29-s − 1.25·31-s − 9.72·33-s + 4.62·35-s + 0.387·37-s − 9.67·39-s + 6.77·41-s − 10.9·43-s + 0.103·45-s − 1.72·47-s + 14.4·49-s − 11.6·51-s − 1.49·53-s − 5.52·55-s + ⋯
L(s)  = 1  + 1.01·3-s + 0.447·5-s + 1.74·7-s + 0.0343·9-s − 1.66·11-s − 1.52·13-s + 0.454·15-s − 1.60·17-s − 0.229·19-s + 1.77·21-s − 0.865·23-s + 0.200·25-s − 0.982·27-s + 1.46·29-s − 0.224·31-s − 1.69·33-s + 0.781·35-s + 0.0637·37-s − 1.54·39-s + 1.05·41-s − 1.67·43-s + 0.0153·45-s − 0.252·47-s + 2.05·49-s − 1.63·51-s − 0.204·53-s − 0.744·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6080\)    =    \(2^{6} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(48.5490\)
Root analytic conductor: \(6.96771\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
19 \( 1 + T \)
good3 \( 1 - 1.76T + 3T^{2} \)
7 \( 1 - 4.62T + 7T^{2} \)
11 \( 1 + 5.52T + 11T^{2} \)
13 \( 1 + 5.49T + 13T^{2} \)
17 \( 1 + 6.62T + 17T^{2} \)
23 \( 1 + 4.14T + 23T^{2} \)
29 \( 1 - 7.87T + 29T^{2} \)
31 \( 1 + 1.25T + 31T^{2} \)
37 \( 1 - 0.387T + 37T^{2} \)
41 \( 1 - 6.77T + 41T^{2} \)
43 \( 1 + 10.9T + 43T^{2} \)
47 \( 1 + 1.72T + 47T^{2} \)
53 \( 1 + 1.49T + 53T^{2} \)
59 \( 1 - 0.626T + 59T^{2} \)
61 \( 1 + 15.0T + 61T^{2} \)
67 \( 1 - 5.22T + 67T^{2} \)
71 \( 1 - 11.0T + 71T^{2} \)
73 \( 1 + 4.83T + 73T^{2} \)
79 \( 1 - 2.98T + 79T^{2} \)
83 \( 1 + 2.74T + 83T^{2} \)
89 \( 1 - 4.27T + 89T^{2} \)
97 \( 1 + 13.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.916346215067665223700755706978, −7.33381280502520934848432098188, −6.33918487124606852072154851258, −5.24433629181362530062002852270, −4.89426276272825863569675698598, −4.21056578965318731338212295740, −2.78272999301739589750607082250, −2.38698190335972048917653610342, −1.78608210830072041461264581885, 0, 1.78608210830072041461264581885, 2.38698190335972048917653610342, 2.78272999301739589750607082250, 4.21056578965318731338212295740, 4.89426276272825863569675698598, 5.24433629181362530062002852270, 6.33918487124606852072154851258, 7.33381280502520934848432098188, 7.916346215067665223700755706978

Graph of the $Z$-function along the critical line