L(s) = 1 | + 2.78·3-s − 5-s + 0.646·7-s + 4.73·9-s − 2.99·11-s − 6.15·13-s − 2.78·15-s + 2.72·17-s − 19-s + 1.79·21-s + 0.646·23-s + 25-s + 4.82·27-s − 3.81·29-s − 0.0145·31-s − 8.32·33-s − 0.646·35-s − 6.49·37-s − 17.1·39-s + 0.532·41-s − 2.45·43-s − 4.73·45-s − 11.8·47-s − 6.58·49-s + 7.58·51-s + 1.29·53-s + 2.99·55-s + ⋯ |
L(s) = 1 | + 1.60·3-s − 0.447·5-s + 0.244·7-s + 1.57·9-s − 0.902·11-s − 1.70·13-s − 0.718·15-s + 0.661·17-s − 0.229·19-s + 0.392·21-s + 0.134·23-s + 0.200·25-s + 0.927·27-s − 0.708·29-s − 0.00261·31-s − 1.44·33-s − 0.109·35-s − 1.06·37-s − 2.74·39-s + 0.0832·41-s − 0.375·43-s − 0.705·45-s − 1.73·47-s − 0.940·49-s + 1.06·51-s + 0.178·53-s + 0.403·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 19 | \( 1 + T \) |
good | 3 | \( 1 - 2.78T + 3T^{2} \) |
| 7 | \( 1 - 0.646T + 7T^{2} \) |
| 11 | \( 1 + 2.99T + 11T^{2} \) |
| 13 | \( 1 + 6.15T + 13T^{2} \) |
| 17 | \( 1 - 2.72T + 17T^{2} \) |
| 23 | \( 1 - 0.646T + 23T^{2} \) |
| 29 | \( 1 + 3.81T + 29T^{2} \) |
| 31 | \( 1 + 0.0145T + 31T^{2} \) |
| 37 | \( 1 + 6.49T + 37T^{2} \) |
| 41 | \( 1 - 0.532T + 41T^{2} \) |
| 43 | \( 1 + 2.45T + 43T^{2} \) |
| 47 | \( 1 + 11.8T + 47T^{2} \) |
| 53 | \( 1 - 1.29T + 53T^{2} \) |
| 59 | \( 1 + 13.0T + 59T^{2} \) |
| 61 | \( 1 - 3.75T + 61T^{2} \) |
| 67 | \( 1 - 13.2T + 67T^{2} \) |
| 71 | \( 1 - 1.46T + 71T^{2} \) |
| 73 | \( 1 + 8.82T + 73T^{2} \) |
| 79 | \( 1 - 9.17T + 79T^{2} \) |
| 83 | \( 1 - 11.3T + 83T^{2} \) |
| 89 | \( 1 - 14.8T + 89T^{2} \) |
| 97 | \( 1 + 6.34T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.889593299114279807033645619649, −7.35675415019570416450316692059, −6.59479837583687818115105452404, −5.22704651999827002153518111302, −4.83933048997104175131358105679, −3.80066376686854553513269499388, −3.13760384712844317295620544692, −2.45755158579433736607945025078, −1.69341401382123332835348083100, 0,
1.69341401382123332835348083100, 2.45755158579433736607945025078, 3.13760384712844317295620544692, 3.80066376686854553513269499388, 4.83933048997104175131358105679, 5.22704651999827002153518111302, 6.59479837583687818115105452404, 7.35675415019570416450316692059, 7.889593299114279807033645619649