Properties

Label 2-6080-1.1-c1-0-136
Degree $2$
Conductor $6080$
Sign $-1$
Analytic cond. $48.5490$
Root an. cond. $6.96771$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.13·3-s + 5-s − 0.878·7-s + 1.55·9-s − 4.50·11-s + 2.05·13-s + 2.13·15-s − 4.31·17-s + 19-s − 1.87·21-s + 2.15·23-s + 25-s − 3.07·27-s − 9.01·29-s − 4.35·31-s − 9.62·33-s − 0.878·35-s + 8.67·37-s + 4.38·39-s + 4.26·41-s − 12.3·43-s + 1.55·45-s − 2.76·47-s − 6.22·49-s − 9.21·51-s + 3.98·53-s − 4.50·55-s + ⋯
L(s)  = 1  + 1.23·3-s + 0.447·5-s − 0.331·7-s + 0.519·9-s − 1.35·11-s + 0.569·13-s + 0.551·15-s − 1.04·17-s + 0.229·19-s − 0.409·21-s + 0.449·23-s + 0.200·25-s − 0.592·27-s − 1.67·29-s − 0.781·31-s − 1.67·33-s − 0.148·35-s + 1.42·37-s + 0.702·39-s + 0.666·41-s − 1.88·43-s + 0.232·45-s − 0.403·47-s − 0.889·49-s − 1.29·51-s + 0.547·53-s − 0.608·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6080\)    =    \(2^{6} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(48.5490\)
Root analytic conductor: \(6.96771\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
19 \( 1 - T \)
good3 \( 1 - 2.13T + 3T^{2} \)
7 \( 1 + 0.878T + 7T^{2} \)
11 \( 1 + 4.50T + 11T^{2} \)
13 \( 1 - 2.05T + 13T^{2} \)
17 \( 1 + 4.31T + 17T^{2} \)
23 \( 1 - 2.15T + 23T^{2} \)
29 \( 1 + 9.01T + 29T^{2} \)
31 \( 1 + 4.35T + 31T^{2} \)
37 \( 1 - 8.67T + 37T^{2} \)
41 \( 1 - 4.26T + 41T^{2} \)
43 \( 1 + 12.3T + 43T^{2} \)
47 \( 1 + 2.76T + 47T^{2} \)
53 \( 1 - 3.98T + 53T^{2} \)
59 \( 1 + 11.5T + 59T^{2} \)
61 \( 1 - 1.51T + 61T^{2} \)
67 \( 1 + 1.10T + 67T^{2} \)
71 \( 1 - 14.4T + 71T^{2} \)
73 \( 1 + 6.03T + 73T^{2} \)
79 \( 1 + 7.34T + 79T^{2} \)
83 \( 1 - 1.34T + 83T^{2} \)
89 \( 1 + 15.5T + 89T^{2} \)
97 \( 1 - 7.55T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81384839754578572600428202337, −7.22029182955031693127255043108, −6.30584654664075339602918744167, −5.58578291510147417745937729493, −4.80406115147516616746897598868, −3.80512164690314926231210071669, −3.09589608427853279130843606962, −2.43087579762347218572979192891, −1.67666313129379407549906111610, 0, 1.67666313129379407549906111610, 2.43087579762347218572979192891, 3.09589608427853279130843606962, 3.80512164690314926231210071669, 4.80406115147516616746897598868, 5.58578291510147417745937729493, 6.30584654664075339602918744167, 7.22029182955031693127255043108, 7.81384839754578572600428202337

Graph of the $Z$-function along the critical line