Properties

Label 2-6080-1.1-c1-0-126
Degree $2$
Conductor $6080$
Sign $-1$
Analytic cond. $48.5490$
Root an. cond. $6.96771$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.52·3-s − 5-s − 4.03·7-s + 3.39·9-s + 1.67·11-s + 4.79·13-s − 2.52·15-s − 3.28·17-s − 19-s − 10.2·21-s − 4.03·23-s + 25-s + 0.988·27-s − 1.14·29-s − 9.35·31-s + 4.23·33-s + 4.03·35-s + 4.43·37-s + 12.1·39-s + 3.21·41-s + 4.89·43-s − 3.39·45-s − 6.65·47-s + 9.30·49-s − 8.30·51-s + 0.224·53-s − 1.67·55-s + ⋯
L(s)  = 1  + 1.45·3-s − 0.447·5-s − 1.52·7-s + 1.13·9-s + 0.505·11-s + 1.32·13-s − 0.652·15-s − 0.796·17-s − 0.229·19-s − 2.22·21-s − 0.841·23-s + 0.200·25-s + 0.190·27-s − 0.212·29-s − 1.67·31-s + 0.737·33-s + 0.682·35-s + 0.728·37-s + 1.94·39-s + 0.502·41-s + 0.746·43-s − 0.505·45-s − 0.970·47-s + 1.32·49-s − 1.16·51-s + 0.0308·53-s − 0.226·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6080\)    =    \(2^{6} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(48.5490\)
Root analytic conductor: \(6.96771\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 + T \)
good3 \( 1 - 2.52T + 3T^{2} \)
7 \( 1 + 4.03T + 7T^{2} \)
11 \( 1 - 1.67T + 11T^{2} \)
13 \( 1 - 4.79T + 13T^{2} \)
17 \( 1 + 3.28T + 17T^{2} \)
23 \( 1 + 4.03T + 23T^{2} \)
29 \( 1 + 1.14T + 29T^{2} \)
31 \( 1 + 9.35T + 31T^{2} \)
37 \( 1 - 4.43T + 37T^{2} \)
41 \( 1 - 3.21T + 41T^{2} \)
43 \( 1 - 4.89T + 43T^{2} \)
47 \( 1 + 6.65T + 47T^{2} \)
53 \( 1 - 0.224T + 53T^{2} \)
59 \( 1 - 5.52T + 59T^{2} \)
61 \( 1 + 12.9T + 61T^{2} \)
67 \( 1 + 11.5T + 67T^{2} \)
71 \( 1 + 1.21T + 71T^{2} \)
73 \( 1 + 4.98T + 73T^{2} \)
79 \( 1 + 6.00T + 79T^{2} \)
83 \( 1 + 10.6T + 83T^{2} \)
89 \( 1 + 4.37T + 89T^{2} \)
97 \( 1 - 1.93T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.72439857712141411292403630548, −7.19239376433992938585277680572, −6.29675972334452097881277046879, −5.90136256668388925194816398408, −4.36008552596490965105025896843, −3.78955106248052868805425185798, −3.32576948442519179525523618890, −2.53561718008445474249134133680, −1.53371405299089746699836874318, 0, 1.53371405299089746699836874318, 2.53561718008445474249134133680, 3.32576948442519179525523618890, 3.78955106248052868805425185798, 4.36008552596490965105025896843, 5.90136256668388925194816398408, 6.29675972334452097881277046879, 7.19239376433992938585277680572, 7.72439857712141411292403630548

Graph of the $Z$-function along the critical line