L(s) = 1 | + 2.36·3-s − 5-s − 3.61·7-s + 2.61·9-s + 2.20·11-s − 2.57·13-s − 2.36·15-s + 0.922·17-s + 19-s − 8.55·21-s + 7.23·23-s + 25-s − 0.922·27-s − 3.81·29-s − 4.48·31-s + 5.22·33-s + 3.61·35-s + 4.13·37-s − 6.09·39-s − 4.73·41-s − 5.42·43-s − 2.61·45-s + 0.279·47-s + 6.03·49-s + 2.18·51-s − 9.86·53-s − 2.20·55-s + ⋯ |
L(s) = 1 | + 1.36·3-s − 0.447·5-s − 1.36·7-s + 0.870·9-s + 0.664·11-s − 0.713·13-s − 0.611·15-s + 0.223·17-s + 0.229·19-s − 1.86·21-s + 1.50·23-s + 0.200·25-s − 0.177·27-s − 0.708·29-s − 0.805·31-s + 0.908·33-s + 0.610·35-s + 0.679·37-s − 0.975·39-s − 0.739·41-s − 0.827·43-s − 0.389·45-s + 0.0407·47-s + 0.862·49-s + 0.306·51-s − 1.35·53-s − 0.297·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 19 | \( 1 - T \) |
good | 3 | \( 1 - 2.36T + 3T^{2} \) |
| 7 | \( 1 + 3.61T + 7T^{2} \) |
| 11 | \( 1 - 2.20T + 11T^{2} \) |
| 13 | \( 1 + 2.57T + 13T^{2} \) |
| 17 | \( 1 - 0.922T + 17T^{2} \) |
| 23 | \( 1 - 7.23T + 23T^{2} \) |
| 29 | \( 1 + 3.81T + 29T^{2} \) |
| 31 | \( 1 + 4.48T + 31T^{2} \) |
| 37 | \( 1 - 4.13T + 37T^{2} \) |
| 41 | \( 1 + 4.73T + 41T^{2} \) |
| 43 | \( 1 + 5.42T + 43T^{2} \) |
| 47 | \( 1 - 0.279T + 47T^{2} \) |
| 53 | \( 1 + 9.86T + 53T^{2} \) |
| 59 | \( 1 + 1.33T + 59T^{2} \) |
| 61 | \( 1 - 11.1T + 61T^{2} \) |
| 67 | \( 1 + 13.7T + 67T^{2} \) |
| 71 | \( 1 + 11.1T + 71T^{2} \) |
| 73 | \( 1 + 9.28T + 73T^{2} \) |
| 79 | \( 1 - 4.85T + 79T^{2} \) |
| 83 | \( 1 - 9.42T + 83T^{2} \) |
| 89 | \( 1 + 10.3T + 89T^{2} \) |
| 97 | \( 1 - 2.75T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.66062831587080352237288871340, −7.16098930286549594857840244206, −6.55617653635415218225313439607, −5.59601360715565787080046047213, −4.60929457121204314161870243551, −3.69481243571515470844825228860, −3.22313711977486743830816044314, −2.64393383360627433036464005819, −1.48140686876936283499431757607, 0,
1.48140686876936283499431757607, 2.64393383360627433036464005819, 3.22313711977486743830816044314, 3.69481243571515470844825228860, 4.60929457121204314161870243551, 5.59601360715565787080046047213, 6.55617653635415218225313439607, 7.16098930286549594857840244206, 7.66062831587080352237288871340