Properties

Label 2-6080-1.1-c1-0-123
Degree $2$
Conductor $6080$
Sign $-1$
Analytic cond. $48.5490$
Root an. cond. $6.96771$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.36·3-s − 5-s − 3.61·7-s + 2.61·9-s + 2.20·11-s − 2.57·13-s − 2.36·15-s + 0.922·17-s + 19-s − 8.55·21-s + 7.23·23-s + 25-s − 0.922·27-s − 3.81·29-s − 4.48·31-s + 5.22·33-s + 3.61·35-s + 4.13·37-s − 6.09·39-s − 4.73·41-s − 5.42·43-s − 2.61·45-s + 0.279·47-s + 6.03·49-s + 2.18·51-s − 9.86·53-s − 2.20·55-s + ⋯
L(s)  = 1  + 1.36·3-s − 0.447·5-s − 1.36·7-s + 0.870·9-s + 0.664·11-s − 0.713·13-s − 0.611·15-s + 0.223·17-s + 0.229·19-s − 1.86·21-s + 1.50·23-s + 0.200·25-s − 0.177·27-s − 0.708·29-s − 0.805·31-s + 0.908·33-s + 0.610·35-s + 0.679·37-s − 0.975·39-s − 0.739·41-s − 0.827·43-s − 0.389·45-s + 0.0407·47-s + 0.862·49-s + 0.306·51-s − 1.35·53-s − 0.297·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6080\)    =    \(2^{6} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(48.5490\)
Root analytic conductor: \(6.96771\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 - T \)
good3 \( 1 - 2.36T + 3T^{2} \)
7 \( 1 + 3.61T + 7T^{2} \)
11 \( 1 - 2.20T + 11T^{2} \)
13 \( 1 + 2.57T + 13T^{2} \)
17 \( 1 - 0.922T + 17T^{2} \)
23 \( 1 - 7.23T + 23T^{2} \)
29 \( 1 + 3.81T + 29T^{2} \)
31 \( 1 + 4.48T + 31T^{2} \)
37 \( 1 - 4.13T + 37T^{2} \)
41 \( 1 + 4.73T + 41T^{2} \)
43 \( 1 + 5.42T + 43T^{2} \)
47 \( 1 - 0.279T + 47T^{2} \)
53 \( 1 + 9.86T + 53T^{2} \)
59 \( 1 + 1.33T + 59T^{2} \)
61 \( 1 - 11.1T + 61T^{2} \)
67 \( 1 + 13.7T + 67T^{2} \)
71 \( 1 + 11.1T + 71T^{2} \)
73 \( 1 + 9.28T + 73T^{2} \)
79 \( 1 - 4.85T + 79T^{2} \)
83 \( 1 - 9.42T + 83T^{2} \)
89 \( 1 + 10.3T + 89T^{2} \)
97 \( 1 - 2.75T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66062831587080352237288871340, −7.16098930286549594857840244206, −6.55617653635415218225313439607, −5.59601360715565787080046047213, −4.60929457121204314161870243551, −3.69481243571515470844825228860, −3.22313711977486743830816044314, −2.64393383360627433036464005819, −1.48140686876936283499431757607, 0, 1.48140686876936283499431757607, 2.64393383360627433036464005819, 3.22313711977486743830816044314, 3.69481243571515470844825228860, 4.60929457121204314161870243551, 5.59601360715565787080046047213, 6.55617653635415218225313439607, 7.16098930286549594857840244206, 7.66062831587080352237288871340

Graph of the $Z$-function along the critical line