Properties

Label 2-6080-1.1-c1-0-117
Degree $2$
Conductor $6080$
Sign $1$
Analytic cond. $48.5490$
Root an. cond. $6.96771$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.73·3-s − 5-s + 4.47·7-s + 4.45·9-s + 4.94·11-s + 2.80·13-s − 2.73·15-s + 4.39·17-s + 19-s + 12.2·21-s + 4.47·23-s + 25-s + 3.97·27-s − 10.3·29-s − 3.88·31-s + 13.4·33-s − 4.47·35-s − 4.61·37-s + 7.65·39-s + 1.09·41-s + 3.85·43-s − 4.45·45-s − 11.3·47-s + 13.0·49-s + 12.0·51-s + 13.6·53-s − 4.94·55-s + ⋯
L(s)  = 1  + 1.57·3-s − 0.447·5-s + 1.69·7-s + 1.48·9-s + 1.49·11-s + 0.778·13-s − 0.704·15-s + 1.06·17-s + 0.229·19-s + 2.66·21-s + 0.932·23-s + 0.200·25-s + 0.764·27-s − 1.91·29-s − 0.698·31-s + 2.34·33-s − 0.756·35-s − 0.758·37-s + 1.22·39-s + 0.170·41-s + 0.587·43-s − 0.664·45-s − 1.65·47-s + 1.85·49-s + 1.68·51-s + 1.86·53-s − 0.666·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6080\)    =    \(2^{6} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(48.5490\)
Root analytic conductor: \(6.96771\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.072885852\)
\(L(\frac12)\) \(\approx\) \(5.072885852\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 - T \)
good3 \( 1 - 2.73T + 3T^{2} \)
7 \( 1 - 4.47T + 7T^{2} \)
11 \( 1 - 4.94T + 11T^{2} \)
13 \( 1 - 2.80T + 13T^{2} \)
17 \( 1 - 4.39T + 17T^{2} \)
23 \( 1 - 4.47T + 23T^{2} \)
29 \( 1 + 10.3T + 29T^{2} \)
31 \( 1 + 3.88T + 31T^{2} \)
37 \( 1 + 4.61T + 37T^{2} \)
41 \( 1 - 1.09T + 41T^{2} \)
43 \( 1 - 3.85T + 43T^{2} \)
47 \( 1 + 11.3T + 47T^{2} \)
53 \( 1 - 13.6T + 53T^{2} \)
59 \( 1 + 7.09T + 59T^{2} \)
61 \( 1 + 5.09T + 61T^{2} \)
67 \( 1 + 3.40T + 67T^{2} \)
71 \( 1 + 0.909T + 71T^{2} \)
73 \( 1 + 0.0281T + 73T^{2} \)
79 \( 1 + 15.0T + 79T^{2} \)
83 \( 1 + 15.5T + 83T^{2} \)
89 \( 1 + 2.51T + 89T^{2} \)
97 \( 1 - 9.13T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.167787329157054242139356293708, −7.44070253264739446696625637565, −7.15360979044333275957186609493, −5.86778326630594932866590048478, −5.06169068596804607001459015997, −4.03856993630651616023211271516, −3.76429162928713597445824610134, −2.88295472783922896126823232165, −1.59822197317502181450713672768, −1.40697883848180223508111990211, 1.40697883848180223508111990211, 1.59822197317502181450713672768, 2.88295472783922896126823232165, 3.76429162928713597445824610134, 4.03856993630651616023211271516, 5.06169068596804607001459015997, 5.86778326630594932866590048478, 7.15360979044333275957186609493, 7.44070253264739446696625637565, 8.167787329157054242139356293708

Graph of the $Z$-function along the critical line