Properties

Label 2-6080-1.1-c1-0-115
Degree $2$
Conductor $6080$
Sign $-1$
Analytic cond. $48.5490$
Root an. cond. $6.96771$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.531·3-s + 5-s + 0.0955·7-s − 2.71·9-s + 0.337·11-s − 4.49·13-s + 0.531·15-s − 1.68·17-s + 19-s + 0.0508·21-s + 2.51·23-s + 25-s − 3.04·27-s + 6.61·29-s + 6.79·31-s + 0.179·33-s + 0.0955·35-s − 6.28·37-s − 2.38·39-s + 1.06·41-s + 0.325·43-s − 2.71·45-s − 8.94·47-s − 6.99·49-s − 0.895·51-s + 14.4·53-s + 0.337·55-s + ⋯
L(s)  = 1  + 0.307·3-s + 0.447·5-s + 0.0361·7-s − 0.905·9-s + 0.101·11-s − 1.24·13-s + 0.137·15-s − 0.408·17-s + 0.229·19-s + 0.0110·21-s + 0.524·23-s + 0.200·25-s − 0.585·27-s + 1.22·29-s + 1.21·31-s + 0.0312·33-s + 0.0161·35-s − 1.03·37-s − 0.382·39-s + 0.166·41-s + 0.0497·43-s − 0.405·45-s − 1.30·47-s − 0.998·49-s − 0.125·51-s + 1.98·53-s + 0.0455·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6080\)    =    \(2^{6} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(48.5490\)
Root analytic conductor: \(6.96771\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
19 \( 1 - T \)
good3 \( 1 - 0.531T + 3T^{2} \)
7 \( 1 - 0.0955T + 7T^{2} \)
11 \( 1 - 0.337T + 11T^{2} \)
13 \( 1 + 4.49T + 13T^{2} \)
17 \( 1 + 1.68T + 17T^{2} \)
23 \( 1 - 2.51T + 23T^{2} \)
29 \( 1 - 6.61T + 29T^{2} \)
31 \( 1 - 6.79T + 31T^{2} \)
37 \( 1 + 6.28T + 37T^{2} \)
41 \( 1 - 1.06T + 41T^{2} \)
43 \( 1 - 0.325T + 43T^{2} \)
47 \( 1 + 8.94T + 47T^{2} \)
53 \( 1 - 14.4T + 53T^{2} \)
59 \( 1 + 1.20T + 59T^{2} \)
61 \( 1 - 1.21T + 61T^{2} \)
67 \( 1 + 0.111T + 67T^{2} \)
71 \( 1 + 14.9T + 71T^{2} \)
73 \( 1 - 2.47T + 73T^{2} \)
79 \( 1 - 8.33T + 79T^{2} \)
83 \( 1 + 17.9T + 83T^{2} \)
89 \( 1 + 13.6T + 89T^{2} \)
97 \( 1 + 10.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80572915446254539549960217775, −6.91447603853934259722940574026, −6.42684532553012092056914930627, −5.43275430298205639794609497495, −4.96470647803735008223409668416, −4.06880135167251054935774118127, −2.86219722549018522115194560970, −2.61324262235928839878399381652, −1.39960737100680163245357259642, 0, 1.39960737100680163245357259642, 2.61324262235928839878399381652, 2.86219722549018522115194560970, 4.06880135167251054935774118127, 4.96470647803735008223409668416, 5.43275430298205639794609497495, 6.42684532553012092056914930627, 6.91447603853934259722940574026, 7.80572915446254539549960217775

Graph of the $Z$-function along the critical line