Properties

Label 2-6080-1.1-c1-0-103
Degree $2$
Conductor $6080$
Sign $1$
Analytic cond. $48.5490$
Root an. cond. $6.96771$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.87·3-s + 5-s + 3.10·7-s + 5.28·9-s + 1.10·11-s − 1.77·13-s + 2.87·15-s + 7.75·17-s − 19-s + 8.93·21-s − 6.65·23-s + 25-s + 6.57·27-s − 7.75·29-s + 6.57·31-s + 3.18·33-s + 3.10·35-s + 1.40·37-s − 5.10·39-s + 2.81·41-s − 3.10·43-s + 5.28·45-s + 1.46·47-s + 2.63·49-s + 22.3·51-s + 2.59·53-s + 1.10·55-s + ⋯
L(s)  = 1  + 1.66·3-s + 0.447·5-s + 1.17·7-s + 1.76·9-s + 0.333·11-s − 0.491·13-s + 0.743·15-s + 1.88·17-s − 0.229·19-s + 1.95·21-s − 1.38·23-s + 0.200·25-s + 1.26·27-s − 1.44·29-s + 1.18·31-s + 0.553·33-s + 0.524·35-s + 0.231·37-s − 0.817·39-s + 0.440·41-s − 0.473·43-s + 0.787·45-s + 0.213·47-s + 0.377·49-s + 3.12·51-s + 0.356·53-s + 0.148·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6080\)    =    \(2^{6} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(48.5490\)
Root analytic conductor: \(6.96771\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.164805464\)
\(L(\frac12)\) \(\approx\) \(5.164805464\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
19 \( 1 + T \)
good3 \( 1 - 2.87T + 3T^{2} \)
7 \( 1 - 3.10T + 7T^{2} \)
11 \( 1 - 1.10T + 11T^{2} \)
13 \( 1 + 1.77T + 13T^{2} \)
17 \( 1 - 7.75T + 17T^{2} \)
23 \( 1 + 6.65T + 23T^{2} \)
29 \( 1 + 7.75T + 29T^{2} \)
31 \( 1 - 6.57T + 31T^{2} \)
37 \( 1 - 1.40T + 37T^{2} \)
41 \( 1 - 2.81T + 41T^{2} \)
43 \( 1 + 3.10T + 43T^{2} \)
47 \( 1 - 1.46T + 47T^{2} \)
53 \( 1 - 2.59T + 53T^{2} \)
59 \( 1 - 5.38T + 59T^{2} \)
61 \( 1 + 4.07T + 61T^{2} \)
67 \( 1 - 15.8T + 67T^{2} \)
71 \( 1 - 7.14T + 71T^{2} \)
73 \( 1 - 0.243T + 73T^{2} \)
79 \( 1 + 9.38T + 79T^{2} \)
83 \( 1 + 8.86T + 83T^{2} \)
89 \( 1 - 0.813T + 89T^{2} \)
97 \( 1 - 3.19T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.006184297381740882439093663193, −7.75414044418367210381078774811, −6.92503762104058089128301831694, −5.84678231517953802757169728387, −5.15052758878796111940414221179, −4.19348001734353815866784070485, −3.61952546095902160825024704097, −2.65845035230654651538659812081, −1.97227630014821220985369769598, −1.24172242332612181262357361234, 1.24172242332612181262357361234, 1.97227630014821220985369769598, 2.65845035230654651538659812081, 3.61952546095902160825024704097, 4.19348001734353815866784070485, 5.15052758878796111940414221179, 5.84678231517953802757169728387, 6.92503762104058089128301831694, 7.75414044418367210381078774811, 8.006184297381740882439093663193

Graph of the $Z$-function along the critical line