Properties

Label 2-6080-1.1-c1-0-1
Degree $2$
Conductor $6080$
Sign $1$
Analytic cond. $48.5490$
Root an. cond. $6.96771$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.296·3-s + 5-s − 3.56·7-s − 2.91·9-s − 5.56·11-s − 5.26·13-s − 0.296·15-s + 1.40·17-s − 19-s + 1.05·21-s − 6.96·23-s + 25-s + 1.75·27-s − 1.40·29-s + 1.75·31-s + 1.65·33-s − 3.56·35-s − 3.61·37-s + 1.56·39-s + 4.34·41-s + 3.56·43-s − 2.91·45-s − 8.26·47-s + 5.69·49-s − 0.417·51-s + 7.61·53-s − 5.56·55-s + ⋯
L(s)  = 1  − 0.171·3-s + 0.447·5-s − 1.34·7-s − 0.970·9-s − 1.67·11-s − 1.46·13-s − 0.0766·15-s + 0.341·17-s − 0.229·19-s + 0.230·21-s − 1.45·23-s + 0.200·25-s + 0.337·27-s − 0.261·29-s + 0.315·31-s + 0.287·33-s − 0.602·35-s − 0.594·37-s + 0.250·39-s + 0.679·41-s + 0.543·43-s − 0.434·45-s − 1.20·47-s + 0.813·49-s − 0.0584·51-s + 1.04·53-s − 0.750·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6080\)    =    \(2^{6} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(48.5490\)
Root analytic conductor: \(6.96771\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3142332089\)
\(L(\frac12)\) \(\approx\) \(0.3142332089\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
19 \( 1 + T \)
good3 \( 1 + 0.296T + 3T^{2} \)
7 \( 1 + 3.56T + 7T^{2} \)
11 \( 1 + 5.56T + 11T^{2} \)
13 \( 1 + 5.26T + 13T^{2} \)
17 \( 1 - 1.40T + 17T^{2} \)
23 \( 1 + 6.96T + 23T^{2} \)
29 \( 1 + 1.40T + 29T^{2} \)
31 \( 1 - 1.75T + 31T^{2} \)
37 \( 1 + 3.61T + 37T^{2} \)
41 \( 1 - 4.34T + 41T^{2} \)
43 \( 1 - 3.56T + 43T^{2} \)
47 \( 1 + 8.26T + 47T^{2} \)
53 \( 1 - 7.61T + 53T^{2} \)
59 \( 1 + 9.47T + 59T^{2} \)
61 \( 1 + 9.21T + 61T^{2} \)
67 \( 1 - 4.76T + 67T^{2} \)
71 \( 1 + 14.0T + 71T^{2} \)
73 \( 1 - 6.59T + 73T^{2} \)
79 \( 1 - 5.47T + 79T^{2} \)
83 \( 1 - 4.15T + 83T^{2} \)
89 \( 1 + 9.23T + 89T^{2} \)
97 \( 1 - 11.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.901747399823709912061801474685, −7.48726503547836443456856674998, −6.49216465377365778698494982519, −5.91482621703535259491773461663, −5.34781383103289883312427367964, −4.60802370282961363062003938171, −3.38886506502131527793470410400, −2.73055457956907796363605122473, −2.16813262477476938238201303304, −0.26782878278232077568519812313, 0.26782878278232077568519812313, 2.16813262477476938238201303304, 2.73055457956907796363605122473, 3.38886506502131527793470410400, 4.60802370282961363062003938171, 5.34781383103289883312427367964, 5.91482621703535259491773461663, 6.49216465377365778698494982519, 7.48726503547836443456856674998, 7.901747399823709912061801474685

Graph of the $Z$-function along the critical line