L(s) = 1 | − 0.923·3-s − 0.670·5-s − 28.6·7-s − 26.1·9-s + 24.1·11-s − 17.5·13-s + 0.619·15-s − 61.1·17-s − 19·19-s + 26.4·21-s + 160.·23-s − 124.·25-s + 49.0·27-s + 287.·29-s − 47.5·31-s − 22.2·33-s + 19.2·35-s − 237.·37-s + 16.1·39-s + 197.·41-s + 352.·43-s + 17.5·45-s + 357.·47-s + 479.·49-s + 56.4·51-s + 381.·53-s − 16.1·55-s + ⋯ |
L(s) = 1 | − 0.177·3-s − 0.0600·5-s − 1.54·7-s − 0.968·9-s + 0.661·11-s − 0.374·13-s + 0.0106·15-s − 0.872·17-s − 0.229·19-s + 0.275·21-s + 1.45·23-s − 0.996·25-s + 0.349·27-s + 1.84·29-s − 0.275·31-s − 0.117·33-s + 0.0929·35-s − 1.05·37-s + 0.0664·39-s + 0.753·41-s + 1.25·43-s + 0.0581·45-s + 1.10·47-s + 1.39·49-s + 0.155·51-s + 0.988·53-s − 0.0396·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.020436776\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.020436776\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + 19T \) |
good | 3 | \( 1 + 0.923T + 27T^{2} \) |
| 5 | \( 1 + 0.670T + 125T^{2} \) |
| 7 | \( 1 + 28.6T + 343T^{2} \) |
| 11 | \( 1 - 24.1T + 1.33e3T^{2} \) |
| 13 | \( 1 + 17.5T + 2.19e3T^{2} \) |
| 17 | \( 1 + 61.1T + 4.91e3T^{2} \) |
| 23 | \( 1 - 160.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 287.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 47.5T + 2.97e4T^{2} \) |
| 37 | \( 1 + 237.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 197.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 352.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 357.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 381.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 691.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 827.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 166.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 296.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 916.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 1.22e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 547.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 257.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 206.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27946162036799461703201755027, −9.162314815240568425141874262015, −8.863369679856325688258471663851, −7.41497979072202766669575508525, −6.51015845381621122394771846987, −5.92779477056470856826206845437, −4.62440095155770285296863941941, −3.41814324357849922276957659348, −2.52645704766846892484289352499, −0.57832607234313757557824661594,
0.57832607234313757557824661594, 2.52645704766846892484289352499, 3.41814324357849922276957659348, 4.62440095155770285296863941941, 5.92779477056470856826206845437, 6.51015845381621122394771846987, 7.41497979072202766669575508525, 8.863369679856325688258471663851, 9.162314815240568425141874262015, 10.27946162036799461703201755027