Properties

Label 2-608-1.1-c3-0-6
Degree $2$
Conductor $608$
Sign $1$
Analytic cond. $35.8731$
Root an. cond. $5.98942$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.923·3-s − 0.670·5-s − 28.6·7-s − 26.1·9-s + 24.1·11-s − 17.5·13-s + 0.619·15-s − 61.1·17-s − 19·19-s + 26.4·21-s + 160.·23-s − 124.·25-s + 49.0·27-s + 287.·29-s − 47.5·31-s − 22.2·33-s + 19.2·35-s − 237.·37-s + 16.1·39-s + 197.·41-s + 352.·43-s + 17.5·45-s + 357.·47-s + 479.·49-s + 56.4·51-s + 381.·53-s − 16.1·55-s + ⋯
L(s)  = 1  − 0.177·3-s − 0.0600·5-s − 1.54·7-s − 0.968·9-s + 0.661·11-s − 0.374·13-s + 0.0106·15-s − 0.872·17-s − 0.229·19-s + 0.275·21-s + 1.45·23-s − 0.996·25-s + 0.349·27-s + 1.84·29-s − 0.275·31-s − 0.117·33-s + 0.0929·35-s − 1.05·37-s + 0.0664·39-s + 0.753·41-s + 1.25·43-s + 0.0581·45-s + 1.10·47-s + 1.39·49-s + 0.155·51-s + 0.988·53-s − 0.0396·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(608\)    =    \(2^{5} \cdot 19\)
Sign: $1$
Analytic conductor: \(35.8731\)
Root analytic conductor: \(5.98942\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 608,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.020436776\)
\(L(\frac12)\) \(\approx\) \(1.020436776\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + 19T \)
good3 \( 1 + 0.923T + 27T^{2} \)
5 \( 1 + 0.670T + 125T^{2} \)
7 \( 1 + 28.6T + 343T^{2} \)
11 \( 1 - 24.1T + 1.33e3T^{2} \)
13 \( 1 + 17.5T + 2.19e3T^{2} \)
17 \( 1 + 61.1T + 4.91e3T^{2} \)
23 \( 1 - 160.T + 1.21e4T^{2} \)
29 \( 1 - 287.T + 2.43e4T^{2} \)
31 \( 1 + 47.5T + 2.97e4T^{2} \)
37 \( 1 + 237.T + 5.06e4T^{2} \)
41 \( 1 - 197.T + 6.89e4T^{2} \)
43 \( 1 - 352.T + 7.95e4T^{2} \)
47 \( 1 - 357.T + 1.03e5T^{2} \)
53 \( 1 - 381.T + 1.48e5T^{2} \)
59 \( 1 + 691.T + 2.05e5T^{2} \)
61 \( 1 + 827.T + 2.26e5T^{2} \)
67 \( 1 - 166.T + 3.00e5T^{2} \)
71 \( 1 - 296.T + 3.57e5T^{2} \)
73 \( 1 + 916.T + 3.89e5T^{2} \)
79 \( 1 - 1.22e3T + 4.93e5T^{2} \)
83 \( 1 - 547.T + 5.71e5T^{2} \)
89 \( 1 + 257.T + 7.04e5T^{2} \)
97 \( 1 - 206.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.27946162036799461703201755027, −9.162314815240568425141874262015, −8.863369679856325688258471663851, −7.41497979072202766669575508525, −6.51015845381621122394771846987, −5.92779477056470856826206845437, −4.62440095155770285296863941941, −3.41814324357849922276957659348, −2.52645704766846892484289352499, −0.57832607234313757557824661594, 0.57832607234313757557824661594, 2.52645704766846892484289352499, 3.41814324357849922276957659348, 4.62440095155770285296863941941, 5.92779477056470856826206845437, 6.51015845381621122394771846987, 7.41497979072202766669575508525, 8.863369679856325688258471663851, 9.162314815240568425141874262015, 10.27946162036799461703201755027

Graph of the $Z$-function along the critical line