L(s) = 1 | + 2.55·3-s + 7.40·5-s + 10.4·7-s − 20.4·9-s − 48.7·11-s + 4.45·13-s + 18.8·15-s − 61.5·17-s − 19·19-s + 26.7·21-s − 34.8·23-s − 70.2·25-s − 121.·27-s − 179.·29-s − 132.·31-s − 124.·33-s + 77.6·35-s − 99.3·37-s + 11.3·39-s + 382.·41-s + 129.·43-s − 151.·45-s + 488.·47-s − 232.·49-s − 157.·51-s − 129.·53-s − 361.·55-s + ⋯ |
L(s) = 1 | + 0.491·3-s + 0.661·5-s + 0.566·7-s − 0.758·9-s − 1.33·11-s + 0.0950·13-s + 0.325·15-s − 0.877·17-s − 0.229·19-s + 0.278·21-s − 0.315·23-s − 0.561·25-s − 0.864·27-s − 1.14·29-s − 0.769·31-s − 0.657·33-s + 0.375·35-s − 0.441·37-s + 0.0466·39-s + 1.45·41-s + 0.459·43-s − 0.502·45-s + 1.51·47-s − 0.678·49-s − 0.431·51-s − 0.334·53-s − 0.885·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + 19T \) |
good | 3 | \( 1 - 2.55T + 27T^{2} \) |
| 5 | \( 1 - 7.40T + 125T^{2} \) |
| 7 | \( 1 - 10.4T + 343T^{2} \) |
| 11 | \( 1 + 48.7T + 1.33e3T^{2} \) |
| 13 | \( 1 - 4.45T + 2.19e3T^{2} \) |
| 17 | \( 1 + 61.5T + 4.91e3T^{2} \) |
| 23 | \( 1 + 34.8T + 1.21e4T^{2} \) |
| 29 | \( 1 + 179.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 132.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 99.3T + 5.06e4T^{2} \) |
| 41 | \( 1 - 382.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 129.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 488.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 129.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 479.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 394.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 19.8T + 3.00e5T^{2} \) |
| 71 | \( 1 + 221.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 258.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 469.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 373.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 1.60e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.65e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.695103116629293343123989677724, −8.914525800712027624980967856145, −8.098109042580773256733744512775, −7.33824600170806685008366686941, −5.92878137447091350867231736083, −5.35446245632999007283173180894, −4.07871224843389709113405789698, −2.68762737406417200615796665213, −1.94333165002042830225112217241, 0,
1.94333165002042830225112217241, 2.68762737406417200615796665213, 4.07871224843389709113405789698, 5.35446245632999007283173180894, 5.92878137447091350867231736083, 7.33824600170806685008366686941, 8.098109042580773256733744512775, 8.914525800712027624980967856145, 9.695103116629293343123989677724