Properties

Label 2-608-1.1-c3-0-40
Degree $2$
Conductor $608$
Sign $-1$
Analytic cond. $35.8731$
Root an. cond. $5.98942$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.75·3-s + 10.5·5-s + 30.4·7-s − 4.38·9-s − 35.9·11-s − 84.5·13-s − 50.2·15-s + 46.5·17-s + 19·19-s − 144.·21-s + 21.5·23-s − 13.1·25-s + 149.·27-s − 241.·29-s − 143.·31-s + 171.·33-s + 321.·35-s + 57.8·37-s + 402.·39-s − 305.·41-s + 314.·43-s − 46.4·45-s + 228.·47-s + 583.·49-s − 221.·51-s − 85.6·53-s − 380.·55-s + ⋯
L(s)  = 1  − 0.915·3-s + 0.945·5-s + 1.64·7-s − 0.162·9-s − 0.985·11-s − 1.80·13-s − 0.865·15-s + 0.664·17-s + 0.229·19-s − 1.50·21-s + 0.195·23-s − 0.105·25-s + 1.06·27-s − 1.54·29-s − 0.831·31-s + 0.902·33-s + 1.55·35-s + 0.257·37-s + 1.65·39-s − 1.16·41-s + 1.11·43-s − 0.153·45-s + 0.709·47-s + 1.70·49-s − 0.608·51-s − 0.222·53-s − 0.932·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(608\)    =    \(2^{5} \cdot 19\)
Sign: $-1$
Analytic conductor: \(35.8731\)
Root analytic conductor: \(5.98942\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 608,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 - 19T \)
good3 \( 1 + 4.75T + 27T^{2} \)
5 \( 1 - 10.5T + 125T^{2} \)
7 \( 1 - 30.4T + 343T^{2} \)
11 \( 1 + 35.9T + 1.33e3T^{2} \)
13 \( 1 + 84.5T + 2.19e3T^{2} \)
17 \( 1 - 46.5T + 4.91e3T^{2} \)
23 \( 1 - 21.5T + 1.21e4T^{2} \)
29 \( 1 + 241.T + 2.43e4T^{2} \)
31 \( 1 + 143.T + 2.97e4T^{2} \)
37 \( 1 - 57.8T + 5.06e4T^{2} \)
41 \( 1 + 305.T + 6.89e4T^{2} \)
43 \( 1 - 314.T + 7.95e4T^{2} \)
47 \( 1 - 228.T + 1.03e5T^{2} \)
53 \( 1 + 85.6T + 1.48e5T^{2} \)
59 \( 1 + 52.0T + 2.05e5T^{2} \)
61 \( 1 + 133.T + 2.26e5T^{2} \)
67 \( 1 + 1.07e3T + 3.00e5T^{2} \)
71 \( 1 - 245.T + 3.57e5T^{2} \)
73 \( 1 + 501.T + 3.89e5T^{2} \)
79 \( 1 + 730.T + 4.93e5T^{2} \)
83 \( 1 + 915.T + 5.71e5T^{2} \)
89 \( 1 + 374.T + 7.04e5T^{2} \)
97 \( 1 - 440.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02313788987521262588569687336, −9.034957394146988828860091362714, −7.81987659896734333807811321286, −7.27060329395983802029154036572, −5.63629384529704431441884766417, −5.43658679395145418056688765122, −4.59274675572730971893771519766, −2.62664919001604774399278536083, −1.62508018749420257005839672367, 0, 1.62508018749420257005839672367, 2.62664919001604774399278536083, 4.59274675572730971893771519766, 5.43658679395145418056688765122, 5.63629384529704431441884766417, 7.27060329395983802029154036572, 7.81987659896734333807811321286, 9.034957394146988828860091362714, 10.02313788987521262588569687336

Graph of the $Z$-function along the critical line