L(s) = 1 | − 4.75·3-s + 10.5·5-s + 30.4·7-s − 4.38·9-s − 35.9·11-s − 84.5·13-s − 50.2·15-s + 46.5·17-s + 19·19-s − 144.·21-s + 21.5·23-s − 13.1·25-s + 149.·27-s − 241.·29-s − 143.·31-s + 171.·33-s + 321.·35-s + 57.8·37-s + 402.·39-s − 305.·41-s + 314.·43-s − 46.4·45-s + 228.·47-s + 583.·49-s − 221.·51-s − 85.6·53-s − 380.·55-s + ⋯ |
L(s) = 1 | − 0.915·3-s + 0.945·5-s + 1.64·7-s − 0.162·9-s − 0.985·11-s − 1.80·13-s − 0.865·15-s + 0.664·17-s + 0.229·19-s − 1.50·21-s + 0.195·23-s − 0.105·25-s + 1.06·27-s − 1.54·29-s − 0.831·31-s + 0.902·33-s + 1.55·35-s + 0.257·37-s + 1.65·39-s − 1.16·41-s + 1.11·43-s − 0.153·45-s + 0.709·47-s + 1.70·49-s − 0.608·51-s − 0.222·53-s − 0.932·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 - 19T \) |
good | 3 | \( 1 + 4.75T + 27T^{2} \) |
| 5 | \( 1 - 10.5T + 125T^{2} \) |
| 7 | \( 1 - 30.4T + 343T^{2} \) |
| 11 | \( 1 + 35.9T + 1.33e3T^{2} \) |
| 13 | \( 1 + 84.5T + 2.19e3T^{2} \) |
| 17 | \( 1 - 46.5T + 4.91e3T^{2} \) |
| 23 | \( 1 - 21.5T + 1.21e4T^{2} \) |
| 29 | \( 1 + 241.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 143.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 57.8T + 5.06e4T^{2} \) |
| 41 | \( 1 + 305.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 314.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 228.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 85.6T + 1.48e5T^{2} \) |
| 59 | \( 1 + 52.0T + 2.05e5T^{2} \) |
| 61 | \( 1 + 133.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 1.07e3T + 3.00e5T^{2} \) |
| 71 | \( 1 - 245.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 501.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 730.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 915.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 374.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 440.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02313788987521262588569687336, −9.034957394146988828860091362714, −7.81987659896734333807811321286, −7.27060329395983802029154036572, −5.63629384529704431441884766417, −5.43658679395145418056688765122, −4.59274675572730971893771519766, −2.62664919001604774399278536083, −1.62508018749420257005839672367, 0,
1.62508018749420257005839672367, 2.62664919001604774399278536083, 4.59274675572730971893771519766, 5.43658679395145418056688765122, 5.63629384529704431441884766417, 7.27060329395983802029154036572, 7.81987659896734333807811321286, 9.034957394146988828860091362714, 10.02313788987521262588569687336