Properties

Label 2-608-1.1-c3-0-2
Degree $2$
Conductor $608$
Sign $1$
Analytic cond. $35.8731$
Root an. cond. $5.98942$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.45·3-s − 11.5·5-s + 15.9·7-s + 62.4·9-s − 19.4·11-s − 69.4·13-s + 109.·15-s − 112.·17-s − 19·19-s − 150.·21-s + 57.3·23-s + 9.43·25-s − 334.·27-s − 59.8·29-s − 222.·31-s + 183.·33-s − 184.·35-s − 258.·37-s + 657.·39-s − 305.·41-s + 322.·43-s − 723.·45-s − 213.·47-s − 90.0·49-s + 1.06e3·51-s + 348.·53-s + 225.·55-s + ⋯
L(s)  = 1  − 1.81·3-s − 1.03·5-s + 0.858·7-s + 2.31·9-s − 0.532·11-s − 1.48·13-s + 1.88·15-s − 1.60·17-s − 0.229·19-s − 1.56·21-s + 0.520·23-s + 0.0754·25-s − 2.38·27-s − 0.383·29-s − 1.29·31-s + 0.968·33-s − 0.890·35-s − 1.14·37-s + 2.69·39-s − 1.16·41-s + 1.14·43-s − 2.39·45-s − 0.663·47-s − 0.262·49-s + 2.91·51-s + 0.903·53-s + 0.551·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(608\)    =    \(2^{5} \cdot 19\)
Sign: $1$
Analytic conductor: \(35.8731\)
Root analytic conductor: \(5.98942\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 608,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.2596741666\)
\(L(\frac12)\) \(\approx\) \(0.2596741666\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + 19T \)
good3 \( 1 + 9.45T + 27T^{2} \)
5 \( 1 + 11.5T + 125T^{2} \)
7 \( 1 - 15.9T + 343T^{2} \)
11 \( 1 + 19.4T + 1.33e3T^{2} \)
13 \( 1 + 69.4T + 2.19e3T^{2} \)
17 \( 1 + 112.T + 4.91e3T^{2} \)
23 \( 1 - 57.3T + 1.21e4T^{2} \)
29 \( 1 + 59.8T + 2.43e4T^{2} \)
31 \( 1 + 222.T + 2.97e4T^{2} \)
37 \( 1 + 258.T + 5.06e4T^{2} \)
41 \( 1 + 305.T + 6.89e4T^{2} \)
43 \( 1 - 322.T + 7.95e4T^{2} \)
47 \( 1 + 213.T + 1.03e5T^{2} \)
53 \( 1 - 348.T + 1.48e5T^{2} \)
59 \( 1 + 56.3T + 2.05e5T^{2} \)
61 \( 1 - 87.2T + 2.26e5T^{2} \)
67 \( 1 - 1.07e3T + 3.00e5T^{2} \)
71 \( 1 - 725.T + 3.57e5T^{2} \)
73 \( 1 - 889.T + 3.89e5T^{2} \)
79 \( 1 + 1.25e3T + 4.93e5T^{2} \)
83 \( 1 - 227.T + 5.71e5T^{2} \)
89 \( 1 + 927.T + 7.04e5T^{2} \)
97 \( 1 - 603.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.71303195911013105629072842321, −9.602572882840921326894293721059, −8.293188527395414527289769398222, −7.28094776265122393025868815689, −6.80596068335376643415422898504, −5.37312088419645254010410210582, −4.88695966697907644808035295540, −4.02877958417400972270160812102, −2.00599200736370711263156617943, −0.31928613162695180445051201667, 0.31928613162695180445051201667, 2.00599200736370711263156617943, 4.02877958417400972270160812102, 4.88695966697907644808035295540, 5.37312088419645254010410210582, 6.80596068335376643415422898504, 7.28094776265122393025868815689, 8.293188527395414527289769398222, 9.602572882840921326894293721059, 10.71303195911013105629072842321

Graph of the $Z$-function along the critical line