L(s) = 1 | − 0.792i·2-s − 2.52i·3-s + 1.37·4-s + (−2.18 − 0.469i)5-s − 2·6-s − 3.46i·7-s − 2.67i·8-s − 3.37·9-s + (−0.372 + 1.73i)10-s − 3.46i·12-s − 2.74·14-s + (−1.18 + 5.51i)15-s + 0.627·16-s + 5.04i·17-s + 2.67i·18-s + 4·19-s + ⋯ |
L(s) = 1 | − 0.560i·2-s − 1.45i·3-s + 0.686·4-s + (−0.977 − 0.210i)5-s − 0.816·6-s − 1.30i·7-s − 0.944i·8-s − 1.12·9-s + (−0.117 + 0.547i)10-s − 0.999i·12-s − 0.733·14-s + (−0.306 + 1.42i)15-s + 0.156·16-s + 1.22i·17-s + 0.629i·18-s + 0.917·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.977 - 0.210i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.977 - 0.210i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.146639 + 1.38007i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.146639 + 1.38007i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2.18 + 0.469i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + 0.792iT - 2T^{2} \) |
| 3 | \( 1 + 2.52iT - 3T^{2} \) |
| 7 | \( 1 + 3.46iT - 7T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 - 5.04iT - 17T^{2} \) |
| 19 | \( 1 - 4T + 19T^{2} \) |
| 23 | \( 1 - 2.52iT - 23T^{2} \) |
| 29 | \( 1 + 2.74T + 29T^{2} \) |
| 31 | \( 1 + 2.37T + 31T^{2} \) |
| 37 | \( 1 + 11.0iT - 37T^{2} \) |
| 41 | \( 1 - 2.74T + 41T^{2} \) |
| 43 | \( 1 - 3.46iT - 43T^{2} \) |
| 47 | \( 1 - 6.63iT - 47T^{2} \) |
| 53 | \( 1 - 3.16iT - 53T^{2} \) |
| 59 | \( 1 - 1.62T + 59T^{2} \) |
| 61 | \( 1 + 10.7T + 61T^{2} \) |
| 67 | \( 1 + 0.644iT - 67T^{2} \) |
| 71 | \( 1 - 7.11T + 71T^{2} \) |
| 73 | \( 1 + 6.92iT - 73T^{2} \) |
| 79 | \( 1 - 12.7T + 79T^{2} \) |
| 83 | \( 1 + 6.63iT - 83T^{2} \) |
| 89 | \( 1 - 4.37T + 89T^{2} \) |
| 97 | \( 1 + 4.10iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66677015585856138930471372173, −9.355445806207278041584819802711, −7.88569327122399121617862012997, −7.56167110682935819631897649123, −6.91189455124613568041877591161, −5.91036376415282172734571149765, −4.14738754503175398895066481644, −3.28458531625869575087816792307, −1.75634307146198927034850509194, −0.78589337587497959640231614419,
2.62445275935766940188297970435, 3.47675716629220954232490730031, 4.86680725215035031316690321782, 5.42657400093018570778408055405, 6.62839621550305437245631857300, 7.62312346452348710948298320952, 8.552125052468707136746348602842, 9.295072242858146378478686328783, 10.24765190727687604585737753710, 11.23463096596963189001057565436