L(s) = 1 | + (−0.309 + 0.951i)2-s + (2.42 − 1.76i)3-s + (0.809 + 0.587i)4-s + (0.309 + 0.951i)5-s + (0.927 + 2.85i)6-s + (2.42 + 1.76i)7-s + (−2.42 + 1.76i)8-s + (1.85 − 5.70i)9-s − 0.999·10-s + 3.00·12-s + (1.23 − 3.80i)13-s + (−2.42 + 1.76i)14-s + (2.42 + 1.76i)15-s + (−0.309 − 0.951i)16-s + (4.85 + 3.52i)18-s + (−3.23 + 2.35i)19-s + ⋯ |
L(s) = 1 | + (−0.218 + 0.672i)2-s + (1.40 − 1.01i)3-s + (0.404 + 0.293i)4-s + (0.138 + 0.425i)5-s + (0.378 + 1.16i)6-s + (0.917 + 0.666i)7-s + (−0.858 + 0.623i)8-s + (0.618 − 1.90i)9-s − 0.316·10-s + 0.866·12-s + (0.342 − 1.05i)13-s + (−0.648 + 0.471i)14-s + (0.626 + 0.455i)15-s + (−0.0772 − 0.237i)16-s + (1.14 + 0.831i)18-s + (−0.742 + 0.539i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.836 - 0.548i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.836 - 0.548i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.37909 + 0.710951i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.37909 + 0.710951i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.309 - 0.951i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.309 - 0.951i)T + (-1.61 - 1.17i)T^{2} \) |
| 3 | \( 1 + (-2.42 + 1.76i)T + (0.927 - 2.85i)T^{2} \) |
| 7 | \( 1 + (-2.42 - 1.76i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (-1.23 + 3.80i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (3.23 - 2.35i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + 8T + 23T^{2} \) |
| 29 | \( 1 + (4.85 + 3.52i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (0.618 - 1.90i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-6.47 - 4.70i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-4.04 + 2.93i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 - 5T + 43T^{2} \) |
| 47 | \( 1 + (-2.42 + 1.76i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (-1.23 + 3.80i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-1.61 - 1.17i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (3.39 + 10.4i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + 13T + 67T^{2} \) |
| 71 | \( 1 + (-0.618 - 1.90i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-6.47 - 4.70i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (-3.09 + 9.51i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-1.23 - 3.80i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 - T + 89T^{2} \) |
| 97 | \( 1 + (2.47 - 7.60i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.73672643209328905350385699294, −9.460552662053755506265634742558, −8.476363989806113589840588787306, −8.005555007689480603994003117512, −7.56909427982818580786916189681, −6.41085001414077972736575446037, −5.72032501444492930582601360601, −3.76351380540971861461186752261, −2.60996089031176532691576586150, −1.91095190029464593981894167460,
1.64543658180506032343725931973, 2.52442023018752714886391843180, 3.97231325903907202300397747043, 4.40238840880682856611799400786, 5.91131485224818000266982901215, 7.33949572748974404850200086492, 8.217353090568468414843307820781, 9.173241459075668913966186087691, 9.543153920717872048752370919641, 10.63105723178609384179110491042