L(s) = 1 | + (−1.69 − 1.23i)2-s + (0.591 − 1.81i)3-s + (0.738 + 2.27i)4-s + (0.809 − 0.587i)5-s + (−3.24 + 2.35i)6-s + (0.947 + 2.91i)7-s + (0.252 − 0.777i)8-s + (−0.533 − 0.387i)9-s − 2.09·10-s + 4.57·12-s + (2.46 + 1.79i)13-s + (1.98 − 6.11i)14-s + (−0.591 − 1.81i)15-s + (2.48 − 1.80i)16-s + (−0.375 + 0.272i)17-s + (0.427 + 1.31i)18-s + ⋯ |
L(s) = 1 | + (−1.19 − 0.870i)2-s + (0.341 − 1.05i)3-s + (0.369 + 1.13i)4-s + (0.361 − 0.262i)5-s + (−1.32 + 0.961i)6-s + (0.358 + 1.10i)7-s + (0.0893 − 0.274i)8-s + (−0.177 − 0.129i)9-s − 0.662·10-s + 1.31·12-s + (0.684 + 0.497i)13-s + (0.530 − 1.63i)14-s + (−0.152 − 0.469i)15-s + (0.620 − 0.450i)16-s + (−0.0910 + 0.0661i)17-s + (0.100 + 0.309i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.220 + 0.975i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.220 + 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.650666 - 0.814438i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.650666 - 0.814438i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (1.69 + 1.23i)T + (0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (-0.591 + 1.81i)T + (-2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (-0.947 - 2.91i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.46 - 1.79i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (0.375 - 0.272i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-2.43 + 7.50i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 1.39T + 23T^{2} \) |
| 29 | \( 1 + (1.15 + 3.53i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-8.47 - 6.15i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.569 - 1.75i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.36 + 4.19i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 1.31T + 43T^{2} \) |
| 47 | \( 1 + (0.920 - 2.83i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (3.38 + 2.46i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.869 - 2.67i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (1.63 - 1.18i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 6.75T + 67T^{2} \) |
| 71 | \( 1 + (-5.27 + 3.83i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-3.05 - 9.39i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (9.35 + 6.79i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-7.21 + 5.24i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 6.76T + 89T^{2} \) |
| 97 | \( 1 + (12.4 + 9.02i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32470109886809812951353022337, −9.325415246022063331503876318246, −8.733059955866788460833320996807, −8.165320740431770563789497740419, −7.12962037987093702667935362466, −6.07672991243410218430802639577, −4.83206980394958603056895414799, −2.84336782846742766736340212573, −2.09612114075353792966860797197, −1.08286063106032696167277620798,
1.21740400565484983719924901005, 3.40595830989253007098971557085, 4.26955004033676091953034830091, 5.68218452664452406521191840978, 6.59952465341945191767375312018, 7.67228856989515025613625223403, 8.202488777717575328716032222980, 9.231821678861424890275486154184, 10.02993616071349080116896203395, 10.30152216571974575130929345014