L(s) = 1 | + (0.809 − 0.587i)2-s + (−0.927 − 2.85i)3-s + (−0.309 + 0.951i)4-s + (−0.809 − 0.587i)5-s + (−2.42 − 1.76i)6-s + (−0.927 + 2.85i)7-s + (0.927 + 2.85i)8-s + (−4.85 + 3.52i)9-s − 10-s + 2.99·12-s + (−3.23 + 2.35i)13-s + (0.927 + 2.85i)14-s + (−0.927 + 2.85i)15-s + (0.809 + 0.587i)16-s + (−1.85 + 5.70i)18-s + (1.23 + 3.80i)19-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (−0.535 − 1.64i)3-s + (−0.154 + 0.475i)4-s + (−0.361 − 0.262i)5-s + (−0.990 − 0.719i)6-s + (−0.350 + 1.07i)7-s + (0.327 + 1.00i)8-s + (−1.61 + 1.17i)9-s − 0.316·10-s + 0.866·12-s + (−0.897 + 0.652i)13-s + (0.247 + 0.762i)14-s + (−0.239 + 0.736i)15-s + (0.202 + 0.146i)16-s + (−0.437 + 1.34i)18-s + (0.283 + 0.872i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.394 - 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.394 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.489485 + 0.322488i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.489485 + 0.322488i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.809 + 0.587i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.809 + 0.587i)T + (0.618 - 1.90i)T^{2} \) |
| 3 | \( 1 + (0.927 + 2.85i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (0.927 - 2.85i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (3.23 - 2.35i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.23 - 3.80i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 8T + 23T^{2} \) |
| 29 | \( 1 + (-1.85 + 5.70i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.61 + 1.17i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.47 - 7.60i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (1.54 + 4.75i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 5T + 43T^{2} \) |
| 47 | \( 1 + (0.927 + 2.85i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (3.23 - 2.35i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (0.618 - 1.90i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-8.89 - 6.46i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 13T + 67T^{2} \) |
| 71 | \( 1 + (1.61 + 1.17i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (2.47 - 7.60i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (8.09 - 5.87i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (3.23 + 2.35i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - T + 89T^{2} \) |
| 97 | \( 1 + (-6.47 + 4.70i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.62123335775150903612487557058, −10.05123928848904119682016680120, −8.743704462335276058463400454628, −8.026959781035782677278021620372, −7.32442127702582878885075089311, −6.18534576004986685578290837291, −5.46670749696114166845279095066, −4.23339119669243075436047087455, −2.72756225843641035421928372655, −1.89075250441913589942215105599,
0.27669842401542515469935513239, 3.26935150372612190660382129586, 4.15487183417568456685304694854, 4.79965826237156350001113941975, 5.65317208821220037234345754557, 6.65398580025625962532903583065, 7.61880610988925005955761734586, 9.107940321674159098617775878489, 9.961173516342668371135079802551, 10.35689185411108091536179782578