L(s) = 1 | + (−1.95 + 1.41i)2-s + (−0.874 − 2.68i)3-s + (1.18 − 3.64i)4-s + (0.809 + 0.587i)5-s + (5.52 + 4.01i)6-s + (−0.618 + 1.90i)7-s + (1.36 + 4.19i)8-s + (−4.04 + 2.93i)9-s − 2.41·10-s − 10.8·12-s + (0.947 − 0.688i)13-s + (−1.49 − 4.59i)14-s + (0.874 − 2.68i)15-s + (−2.42 − 1.76i)16-s + (−5.52 − 4.01i)17-s + (3.73 − 11.4i)18-s + ⋯ |
L(s) = 1 | + (−1.38 + 1.00i)2-s + (−0.504 − 1.55i)3-s + (0.591 − 1.82i)4-s + (0.361 + 0.262i)5-s + (2.25 + 1.63i)6-s + (−0.233 + 0.718i)7-s + (0.482 + 1.48i)8-s + (−1.34 + 0.979i)9-s − 0.763·10-s − 3.12·12-s + (0.262 − 0.190i)13-s + (−0.398 − 1.22i)14-s + (0.225 − 0.694i)15-s + (−0.606 − 0.440i)16-s + (−1.33 − 0.973i)17-s + (0.879 − 2.70i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.751 - 0.659i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.751 - 0.659i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0609161 + 0.161877i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0609161 + 0.161877i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (1.95 - 1.41i)T + (0.618 - 1.90i)T^{2} \) |
| 3 | \( 1 + (0.874 + 2.68i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (0.618 - 1.90i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-0.947 + 0.688i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (5.52 + 4.01i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 2.82T + 23T^{2} \) |
| 29 | \( 1 + (1.13 - 3.47i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.36 - 7.28i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.85 - 5.70i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 6T + 43T^{2} \) |
| 47 | \( 1 + (-0.874 - 2.68i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (9.43 - 6.85i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.511 + 1.57i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-7.53 - 5.47i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 12.4T + 67T^{2} \) |
| 71 | \( 1 + (9.15 + 6.65i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (0.362 - 1.11i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (3.23 - 2.35i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-4.85 - 3.52i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 13.3T + 89T^{2} \) |
| 97 | \( 1 + (2.95 - 2.14i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.94102925834654332807689920223, −9.829823624280525468916989986063, −8.968072713929739282965628213552, −8.230643067377337112551582442419, −7.37638664434202708782669853249, −6.60476948946386360599457517349, −6.19746744049680917868128153970, −5.22188734028503457312873362961, −2.56070906405502458511648166946, −1.38004831579431859270622861469,
0.16418174527858703823356962315, 2.02787471658105048735921580022, 3.61283920834235411986095958761, 4.26975055906856205819559486898, 5.62219432382100593375879142323, 6.85603664743806784838838278317, 8.266243782547097709547200924503, 8.944381049181191121730075660553, 9.734018516748958974269722059259, 10.21991224346879796209485202659