Properties

Label 2-605-1.1-c3-0-41
Degree $2$
Conductor $605$
Sign $1$
Analytic cond. $35.6961$
Root an. cond. $5.97462$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.43·2-s + 0.561·3-s − 5.93·4-s + 5·5-s + 0.807·6-s + 31.0·7-s − 20.0·8-s − 26.6·9-s + 7.19·10-s − 3.33·12-s + 45.6·13-s + 44.6·14-s + 2.80·15-s + 18.6·16-s + 40.4·17-s − 38.3·18-s − 91.2·19-s − 29.6·20-s + 17.4·21-s + 32.2·23-s − 11.2·24-s + 25·25-s + 65.6·26-s − 30.1·27-s − 184.·28-s − 35.8·29-s + 4.03·30-s + ⋯
L(s)  = 1  + 0.508·2-s + 0.108·3-s − 0.741·4-s + 0.447·5-s + 0.0549·6-s + 1.67·7-s − 0.885·8-s − 0.988·9-s + 0.227·10-s − 0.0801·12-s + 0.973·13-s + 0.852·14-s + 0.0483·15-s + 0.290·16-s + 0.577·17-s − 0.502·18-s − 1.10·19-s − 0.331·20-s + 0.181·21-s + 0.292·23-s − 0.0957·24-s + 0.200·25-s + 0.494·26-s − 0.214·27-s − 1.24·28-s − 0.229·29-s + 0.0245·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(605\)    =    \(5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(35.6961\)
Root analytic conductor: \(5.97462\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 605,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.736868841\)
\(L(\frac12)\) \(\approx\) \(2.736868841\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 5T \)
11 \( 1 \)
good2 \( 1 - 1.43T + 8T^{2} \)
3 \( 1 - 0.561T + 27T^{2} \)
7 \( 1 - 31.0T + 343T^{2} \)
13 \( 1 - 45.6T + 2.19e3T^{2} \)
17 \( 1 - 40.4T + 4.91e3T^{2} \)
19 \( 1 + 91.2T + 6.85e3T^{2} \)
23 \( 1 - 32.2T + 1.21e4T^{2} \)
29 \( 1 + 35.8T + 2.43e4T^{2} \)
31 \( 1 - 311.T + 2.97e4T^{2} \)
37 \( 1 + 368.T + 5.06e4T^{2} \)
41 \( 1 - 393.T + 6.89e4T^{2} \)
43 \( 1 - 351.T + 7.95e4T^{2} \)
47 \( 1 + 230.T + 1.03e5T^{2} \)
53 \( 1 - 406.T + 1.48e5T^{2} \)
59 \( 1 + 368.T + 2.05e5T^{2} \)
61 \( 1 - 322.T + 2.26e5T^{2} \)
67 \( 1 - 442.T + 3.00e5T^{2} \)
71 \( 1 - 667.T + 3.57e5T^{2} \)
73 \( 1 - 84.5T + 3.89e5T^{2} \)
79 \( 1 - 411.T + 4.93e5T^{2} \)
83 \( 1 - 835.T + 5.71e5T^{2} \)
89 \( 1 + 799.T + 7.04e5T^{2} \)
97 \( 1 - 768.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.40335165362817584604611235140, −9.113300283836949239862552560290, −8.502349391220599004124457374645, −7.932210956650347655102640537734, −6.30553913608353578590922633673, −5.49588942808232872576462206606, −4.74930780343235686892296600621, −3.73946661765320663390552653761, −2.38676096773606048045772383350, −0.961052795209085454789672262332, 0.961052795209085454789672262332, 2.38676096773606048045772383350, 3.73946661765320663390552653761, 4.74930780343235686892296600621, 5.49588942808232872576462206606, 6.30553913608353578590922633673, 7.932210956650347655102640537734, 8.502349391220599004124457374645, 9.113300283836949239862552560290, 10.40335165362817584604611235140

Graph of the $Z$-function along the critical line