| L(s) = 1 | + 3i·3-s − 20i·7-s − 9·9-s + 16·11-s + 58i·13-s − 38i·17-s − 4·19-s + 60·21-s − 80i·23-s − 27i·27-s − 82·29-s − 8·31-s + 48i·33-s − 426i·37-s − 174·39-s + ⋯ |
| L(s) = 1 | + 0.577i·3-s − 1.07i·7-s − 0.333·9-s + 0.438·11-s + 1.23i·13-s − 0.542i·17-s − 0.0482·19-s + 0.623·21-s − 0.725i·23-s − 0.192i·27-s − 0.525·29-s − 0.0463·31-s + 0.253i·33-s − 1.89i·37-s − 0.714·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.517079692\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.517079692\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 - 3iT \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + 20iT - 343T^{2} \) |
| 11 | \( 1 - 16T + 1.33e3T^{2} \) |
| 13 | \( 1 - 58iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 38iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 4T + 6.85e3T^{2} \) |
| 23 | \( 1 + 80iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 82T + 2.43e4T^{2} \) |
| 31 | \( 1 + 8T + 2.97e4T^{2} \) |
| 37 | \( 1 + 426iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 246T + 6.89e4T^{2} \) |
| 43 | \( 1 + 524iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 464iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 702iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 592T + 2.05e5T^{2} \) |
| 61 | \( 1 - 574T + 2.26e5T^{2} \) |
| 67 | \( 1 - 172iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 768T + 3.57e5T^{2} \) |
| 73 | \( 1 + 558iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 408T + 4.93e5T^{2} \) |
| 83 | \( 1 - 164iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 510T + 7.04e5T^{2} \) |
| 97 | \( 1 + 514iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08925464537923838124710758917, −9.323707853672958177011675162978, −8.519696114425871390472065603652, −7.26368244895566834683292449706, −6.67712189287014130888119718729, −5.36659441327925108958476994143, −4.27404490811162402601632327544, −3.68203004603728928782240578666, −2.07097017686324727908071753403, −0.47834145687975776989485504512,
1.21863089023482092184466507891, 2.48838017547789598607606052442, 3.54358853631334985851693434924, 5.11891543963230836061380993778, 5.87403071882933770742035925329, 6.75457906899322039530647368671, 7.929228793889385178004885778900, 8.501449951883615070174018474750, 9.481481918143408538412420897794, 10.39440214595026171084965836447