| L(s) = 1 | − 3i·3-s − 21.8i·7-s − 9·9-s + 54.6·11-s + 82.7i·13-s + 100. i·17-s + 84.1·19-s − 65.6·21-s − 0.880i·23-s + 27i·27-s + 99.1·29-s − 78.9·31-s − 163. i·33-s − 390. i·37-s + 248.·39-s + ⋯ |
| L(s) = 1 | − 0.577i·3-s − 1.18i·7-s − 0.333·9-s + 1.49·11-s + 1.76i·13-s + 1.43i·17-s + 1.01·19-s − 0.682·21-s − 0.00798i·23-s + 0.192i·27-s + 0.634·29-s − 0.457·31-s − 0.864i·33-s − 1.73i·37-s + 1.01·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(2.209170534\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.209170534\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + 3iT \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + 21.8iT - 343T^{2} \) |
| 11 | \( 1 - 54.6T + 1.33e3T^{2} \) |
| 13 | \( 1 - 82.7iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 100. iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 84.1T + 6.85e3T^{2} \) |
| 23 | \( 1 + 0.880iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 99.1T + 2.43e4T^{2} \) |
| 31 | \( 1 + 78.9T + 2.97e4T^{2} \) |
| 37 | \( 1 + 390. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 104.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 241. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 512. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 284. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 709.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 470.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 667. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 51.5T + 3.57e5T^{2} \) |
| 73 | \( 1 - 371. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 79.3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 682. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 628.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.51e3iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.18213166203725245969871762292, −9.260916722674592424919815561531, −8.485438256903459492112235796254, −7.21175957323481055115377735442, −6.84859506167256580968200480595, −5.85782973887481707375935130866, −4.25103008060284159014230339010, −3.75117838340060833834142103517, −1.88443403498103282605214314525, −0.984032761688385399213954261270,
0.891644278167567419717535854652, 2.66838639305573628472490652511, 3.48927439138251199564886102906, 4.93042556554857431343952765600, 5.57892703307527982926781662397, 6.60912453406999823197502424841, 7.81053311824142499223817108118, 8.764338299455004412145711589565, 9.449499140256462686613694399912, 10.13253668542405563045392012195