Properties

Label 2-600-5.4-c3-0-12
Degree $2$
Conductor $600$
Sign $0.894 + 0.447i$
Analytic cond. $35.4011$
Root an. cond. $5.94988$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3i·3-s − 21.8i·7-s − 9·9-s + 54.6·11-s + 82.7i·13-s + 100. i·17-s + 84.1·19-s − 65.6·21-s − 0.880i·23-s + 27i·27-s + 99.1·29-s − 78.9·31-s − 163. i·33-s − 390. i·37-s + 248.·39-s + ⋯
L(s)  = 1  − 0.577i·3-s − 1.18i·7-s − 0.333·9-s + 1.49·11-s + 1.76i·13-s + 1.43i·17-s + 1.01·19-s − 0.682·21-s − 0.00798i·23-s + 0.192i·27-s + 0.634·29-s − 0.457·31-s − 0.864i·33-s − 1.73i·37-s + 1.01·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $0.894 + 0.447i$
Analytic conductor: \(35.4011\)
Root analytic conductor: \(5.94988\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{600} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 600,\ (\ :3/2),\ 0.894 + 0.447i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.209170534\)
\(L(\frac12)\) \(\approx\) \(2.209170534\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3iT \)
5 \( 1 \)
good7 \( 1 + 21.8iT - 343T^{2} \)
11 \( 1 - 54.6T + 1.33e3T^{2} \)
13 \( 1 - 82.7iT - 2.19e3T^{2} \)
17 \( 1 - 100. iT - 4.91e3T^{2} \)
19 \( 1 - 84.1T + 6.85e3T^{2} \)
23 \( 1 + 0.880iT - 1.21e4T^{2} \)
29 \( 1 - 99.1T + 2.43e4T^{2} \)
31 \( 1 + 78.9T + 2.97e4T^{2} \)
37 \( 1 + 390. iT - 5.06e4T^{2} \)
41 \( 1 - 104.T + 6.89e4T^{2} \)
43 \( 1 - 241. iT - 7.95e4T^{2} \)
47 \( 1 + 512. iT - 1.03e5T^{2} \)
53 \( 1 - 284. iT - 1.48e5T^{2} \)
59 \( 1 - 709.T + 2.05e5T^{2} \)
61 \( 1 - 470.T + 2.26e5T^{2} \)
67 \( 1 - 667. iT - 3.00e5T^{2} \)
71 \( 1 + 51.5T + 3.57e5T^{2} \)
73 \( 1 - 371. iT - 3.89e5T^{2} \)
79 \( 1 - 79.3T + 4.93e5T^{2} \)
83 \( 1 + 682. iT - 5.71e5T^{2} \)
89 \( 1 + 628.T + 7.04e5T^{2} \)
97 \( 1 + 1.51e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18213166203725245969871762292, −9.260916722674592424919815561531, −8.485438256903459492112235796254, −7.21175957323481055115377735442, −6.84859506167256580968200480595, −5.85782973887481707375935130866, −4.25103008060284159014230339010, −3.75117838340060833834142103517, −1.88443403498103282605214314525, −0.984032761688385399213954261270, 0.891644278167567419717535854652, 2.66838639305573628472490652511, 3.48927439138251199564886102906, 4.93042556554857431343952765600, 5.57892703307527982926781662397, 6.60912453406999823197502424841, 7.81053311824142499223817108118, 8.764338299455004412145711589565, 9.449499140256462686613694399912, 10.13253668542405563045392012195

Graph of the $Z$-function along the critical line