L(s) = 1 | + 3i·3-s + 4i·7-s − 9·9-s + 72·11-s + 6i·13-s + 38i·17-s − 52·19-s − 12·21-s − 152i·23-s − 27i·27-s + 78·29-s + 120·31-s + 216i·33-s − 150i·37-s − 18·39-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + 0.215i·7-s − 0.333·9-s + 1.97·11-s + 0.128i·13-s + 0.542i·17-s − 0.627·19-s − 0.124·21-s − 1.37i·23-s − 0.192i·27-s + 0.499·29-s + 0.695·31-s + 1.13i·33-s − 0.666i·37-s − 0.0739·39-s + ⋯ |
Λ(s)=(=(600s/2ΓC(s)L(s)(0.447−0.894i)Λ(4−s)
Λ(s)=(=(600s/2ΓC(s+3/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
600
= 23⋅3⋅52
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
35.4011 |
Root analytic conductor: |
5.94988 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ600(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 600, ( :3/2), 0.447−0.894i)
|
Particular Values
L(2) |
≈ |
2.148052348 |
L(21) |
≈ |
2.148052348 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3iT |
| 5 | 1 |
good | 7 | 1−4iT−343T2 |
| 11 | 1−72T+1.33e3T2 |
| 13 | 1−6iT−2.19e3T2 |
| 17 | 1−38iT−4.91e3T2 |
| 19 | 1+52T+6.85e3T2 |
| 23 | 1+152iT−1.21e4T2 |
| 29 | 1−78T+2.43e4T2 |
| 31 | 1−120T+2.97e4T2 |
| 37 | 1+150iT−5.06e4T2 |
| 41 | 1−362T+6.89e4T2 |
| 43 | 1−484iT−7.95e4T2 |
| 47 | 1−280iT−1.03e5T2 |
| 53 | 1−670iT−1.48e5T2 |
| 59 | 1+696T+2.05e5T2 |
| 61 | 1−222T+2.26e5T2 |
| 67 | 1+4iT−3.00e5T2 |
| 71 | 1−96T+3.57e5T2 |
| 73 | 1+178iT−3.89e5T2 |
| 79 | 1−632T+4.93e5T2 |
| 83 | 1−612iT−5.71e5T2 |
| 89 | 1+994T+7.04e5T2 |
| 97 | 1−1.63e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.47177426064802263608151346761, −9.347945959485985767297050085268, −8.938881734441480588555998880665, −7.913352370001075159685331044057, −6.52540282771831746062670303778, −6.08985261807926313753308484821, −4.53397163324778011718774849468, −4.00563703197745381294656309836, −2.62445535050150252813210834323, −1.11661554429713011183707908193,
0.77255853202351811059780156652, 1.88234489221942233959947996107, 3.38064279740927582896832935625, 4.36417776808573105888307903932, 5.69668832742928822351224076743, 6.64125801374809805071914994705, 7.25289629556677057149254609618, 8.402252492826185807553042885624, 9.171320395518647947085934709538, 10.00740828160630579661965223252