Properties

Label 2-600-5.4-c3-0-10
Degree $2$
Conductor $600$
Sign $0.447 - 0.894i$
Analytic cond. $35.4011$
Root an. cond. $5.94988$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3i·3-s + 4i·7-s − 9·9-s + 72·11-s + 6i·13-s + 38i·17-s − 52·19-s − 12·21-s − 152i·23-s − 27i·27-s + 78·29-s + 120·31-s + 216i·33-s − 150i·37-s − 18·39-s + ⋯
L(s)  = 1  + 0.577i·3-s + 0.215i·7-s − 0.333·9-s + 1.97·11-s + 0.128i·13-s + 0.542i·17-s − 0.627·19-s − 0.124·21-s − 1.37i·23-s − 0.192i·27-s + 0.499·29-s + 0.695·31-s + 1.13i·33-s − 0.666i·37-s − 0.0739·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(35.4011\)
Root analytic conductor: \(5.94988\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{600} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 600,\ (\ :3/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.148052348\)
\(L(\frac12)\) \(\approx\) \(2.148052348\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3iT \)
5 \( 1 \)
good7 \( 1 - 4iT - 343T^{2} \)
11 \( 1 - 72T + 1.33e3T^{2} \)
13 \( 1 - 6iT - 2.19e3T^{2} \)
17 \( 1 - 38iT - 4.91e3T^{2} \)
19 \( 1 + 52T + 6.85e3T^{2} \)
23 \( 1 + 152iT - 1.21e4T^{2} \)
29 \( 1 - 78T + 2.43e4T^{2} \)
31 \( 1 - 120T + 2.97e4T^{2} \)
37 \( 1 + 150iT - 5.06e4T^{2} \)
41 \( 1 - 362T + 6.89e4T^{2} \)
43 \( 1 - 484iT - 7.95e4T^{2} \)
47 \( 1 - 280iT - 1.03e5T^{2} \)
53 \( 1 - 670iT - 1.48e5T^{2} \)
59 \( 1 + 696T + 2.05e5T^{2} \)
61 \( 1 - 222T + 2.26e5T^{2} \)
67 \( 1 + 4iT - 3.00e5T^{2} \)
71 \( 1 - 96T + 3.57e5T^{2} \)
73 \( 1 + 178iT - 3.89e5T^{2} \)
79 \( 1 - 632T + 4.93e5T^{2} \)
83 \( 1 - 612iT - 5.71e5T^{2} \)
89 \( 1 + 994T + 7.04e5T^{2} \)
97 \( 1 - 1.63e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.47177426064802263608151346761, −9.347945959485985767297050085268, −8.938881734441480588555998880665, −7.913352370001075159685331044057, −6.52540282771831746062670303778, −6.08985261807926313753308484821, −4.53397163324778011718774849468, −4.00563703197745381294656309836, −2.62445535050150252813210834323, −1.11661554429713011183707908193, 0.77255853202351811059780156652, 1.88234489221942233959947996107, 3.38064279740927582896832935625, 4.36417776808573105888307903932, 5.69668832742928822351224076743, 6.64125801374809805071914994705, 7.25289629556677057149254609618, 8.402252492826185807553042885624, 9.171320395518647947085934709538, 10.00740828160630579661965223252

Graph of the $Z$-function along the critical line