L(s) = 1 | + (1 + i)2-s + (1.22 − 1.22i)3-s + 2i·4-s + 2.44·6-s + (−2 + 2i)8-s − 2.99i·9-s + 4.89·11-s + (2.44 + 2.44i)12-s + (2.44 − 2.44i)13-s − 4·16-s + (2 + 2i)17-s + (2.99 − 2.99i)18-s + (4.89 + 4.89i)22-s + (−4 + 4i)23-s + 4.89i·24-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + (0.707 − 0.707i)3-s + i·4-s + 0.999·6-s + (−0.707 + 0.707i)8-s − 0.999i·9-s + 1.47·11-s + (0.707 + 0.707i)12-s + (0.679 − 0.679i)13-s − 16-s + (0.485 + 0.485i)17-s + (0.707 − 0.707i)18-s + (1.04 + 1.04i)22-s + (−0.834 + 0.834i)23-s + 0.999i·24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.67032 + 0.758582i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.67032 + 0.758582i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - i)T \) |
| 3 | \( 1 + (-1.22 + 1.22i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 7iT^{2} \) |
| 11 | \( 1 - 4.89T + 11T^{2} \) |
| 13 | \( 1 + (-2.44 + 2.44i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2 - 2i)T + 17iT^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + (4 - 4i)T - 23iT^{2} \) |
| 29 | \( 1 - 9.79iT - 29T^{2} \) |
| 31 | \( 1 - 2T + 31T^{2} \) |
| 37 | \( 1 + (7.34 + 7.34i)T + 37iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + (-2.44 + 2.44i)T - 43iT^{2} \) |
| 47 | \( 1 + (8 + 8i)T + 47iT^{2} \) |
| 53 | \( 1 + 53iT^{2} \) |
| 59 | \( 1 + 14.6iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + (7.34 + 7.34i)T + 67iT^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + 73iT^{2} \) |
| 79 | \( 1 - 14iT - 79T^{2} \) |
| 83 | \( 1 + 83iT^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95281112978974217330478827141, −9.499825638981630612944398011656, −8.704069286335532640944172698444, −8.010720811427475638904049986181, −7.05651322915844779699268840616, −6.35914225101324827018779568778, −5.43268133075619471811901371932, −3.85118716125641747987445215382, −3.34081267209930714267366029809, −1.64345585494942339616386399038,
1.59752555641412705031136005861, 2.91580409637808775843585344815, 4.00050273246651966323171548704, 4.50580139619482215223955974534, 5.88118117753724617388340962091, 6.76035274058704159724436536967, 8.234375898477843730411277279226, 9.134932362555782704385283292615, 9.781619829378261081815980904106, 10.54003730869926968582882198292