L(s) = 1 | + 3·3-s + 9·9-s + 4·11-s − 54·13-s − 114·17-s + 44·19-s − 96·23-s + 27·27-s + 134·29-s − 272·31-s + 12·33-s + 98·37-s − 162·39-s − 6·41-s − 12·43-s + 200·47-s − 343·49-s − 342·51-s − 654·53-s + 132·57-s + 36·59-s − 442·61-s + 188·67-s − 288·69-s − 632·71-s + 390·73-s + 688·79-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s + 0.109·11-s − 1.15·13-s − 1.62·17-s + 0.531·19-s − 0.870·23-s + 0.192·27-s + 0.858·29-s − 1.57·31-s + 0.0633·33-s + 0.435·37-s − 0.665·39-s − 0.0228·41-s − 0.0425·43-s + 0.620·47-s − 49-s − 0.939·51-s − 1.69·53-s + 0.306·57-s + 0.0794·59-s − 0.927·61-s + 0.342·67-s − 0.502·69-s − 1.05·71-s + 0.625·73-s + 0.979·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - p T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + p^{3} T^{2} \) |
| 11 | \( 1 - 4 T + p^{3} T^{2} \) |
| 13 | \( 1 + 54 T + p^{3} T^{2} \) |
| 17 | \( 1 + 114 T + p^{3} T^{2} \) |
| 19 | \( 1 - 44 T + p^{3} T^{2} \) |
| 23 | \( 1 + 96 T + p^{3} T^{2} \) |
| 29 | \( 1 - 134 T + p^{3} T^{2} \) |
| 31 | \( 1 + 272 T + p^{3} T^{2} \) |
| 37 | \( 1 - 98 T + p^{3} T^{2} \) |
| 41 | \( 1 + 6 T + p^{3} T^{2} \) |
| 43 | \( 1 + 12 T + p^{3} T^{2} \) |
| 47 | \( 1 - 200 T + p^{3} T^{2} \) |
| 53 | \( 1 + 654 T + p^{3} T^{2} \) |
| 59 | \( 1 - 36 T + p^{3} T^{2} \) |
| 61 | \( 1 + 442 T + p^{3} T^{2} \) |
| 67 | \( 1 - 188 T + p^{3} T^{2} \) |
| 71 | \( 1 + 632 T + p^{3} T^{2} \) |
| 73 | \( 1 - 390 T + p^{3} T^{2} \) |
| 79 | \( 1 - 688 T + p^{3} T^{2} \) |
| 83 | \( 1 + 1188 T + p^{3} T^{2} \) |
| 89 | \( 1 + 694 T + p^{3} T^{2} \) |
| 97 | \( 1 - 1726 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.655062054452861470103965400382, −9.058631997660681547640582988283, −8.043773473711925219962196281201, −7.23777748193364407539882315937, −6.32264660827690651554660580118, −5.01577188495701691962861012071, −4.12588707083103503084398181007, −2.85265198802496213377326143370, −1.83481155734267114601777652366, 0,
1.83481155734267114601777652366, 2.85265198802496213377326143370, 4.12588707083103503084398181007, 5.01577188495701691962861012071, 6.32264660827690651554660580118, 7.23777748193364407539882315937, 8.043773473711925219962196281201, 9.058631997660681547640582988283, 9.655062054452861470103965400382