Properties

Label 2-600-1.1-c3-0-26
Degree $2$
Conductor $600$
Sign $-1$
Analytic cond. $35.4011$
Root an. cond. $5.94988$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 9·9-s + 4·11-s − 54·13-s − 114·17-s + 44·19-s − 96·23-s + 27·27-s + 134·29-s − 272·31-s + 12·33-s + 98·37-s − 162·39-s − 6·41-s − 12·43-s + 200·47-s − 343·49-s − 342·51-s − 654·53-s + 132·57-s + 36·59-s − 442·61-s + 188·67-s − 288·69-s − 632·71-s + 390·73-s + 688·79-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 0.109·11-s − 1.15·13-s − 1.62·17-s + 0.531·19-s − 0.870·23-s + 0.192·27-s + 0.858·29-s − 1.57·31-s + 0.0633·33-s + 0.435·37-s − 0.665·39-s − 0.0228·41-s − 0.0425·43-s + 0.620·47-s − 49-s − 0.939·51-s − 1.69·53-s + 0.306·57-s + 0.0794·59-s − 0.927·61-s + 0.342·67-s − 0.502·69-s − 1.05·71-s + 0.625·73-s + 0.979·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(35.4011\)
Root analytic conductor: \(5.94988\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 600,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 \)
good7 \( 1 + p^{3} T^{2} \)
11 \( 1 - 4 T + p^{3} T^{2} \)
13 \( 1 + 54 T + p^{3} T^{2} \)
17 \( 1 + 114 T + p^{3} T^{2} \)
19 \( 1 - 44 T + p^{3} T^{2} \)
23 \( 1 + 96 T + p^{3} T^{2} \)
29 \( 1 - 134 T + p^{3} T^{2} \)
31 \( 1 + 272 T + p^{3} T^{2} \)
37 \( 1 - 98 T + p^{3} T^{2} \)
41 \( 1 + 6 T + p^{3} T^{2} \)
43 \( 1 + 12 T + p^{3} T^{2} \)
47 \( 1 - 200 T + p^{3} T^{2} \)
53 \( 1 + 654 T + p^{3} T^{2} \)
59 \( 1 - 36 T + p^{3} T^{2} \)
61 \( 1 + 442 T + p^{3} T^{2} \)
67 \( 1 - 188 T + p^{3} T^{2} \)
71 \( 1 + 632 T + p^{3} T^{2} \)
73 \( 1 - 390 T + p^{3} T^{2} \)
79 \( 1 - 688 T + p^{3} T^{2} \)
83 \( 1 + 1188 T + p^{3} T^{2} \)
89 \( 1 + 694 T + p^{3} T^{2} \)
97 \( 1 - 1726 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.655062054452861470103965400382, −9.058631997660681547640582988283, −8.043773473711925219962196281201, −7.23777748193364407539882315937, −6.32264660827690651554660580118, −5.01577188495701691962861012071, −4.12588707083103503084398181007, −2.85265198802496213377326143370, −1.83481155734267114601777652366, 0, 1.83481155734267114601777652366, 2.85265198802496213377326143370, 4.12588707083103503084398181007, 5.01577188495701691962861012071, 6.32264660827690651554660580118, 7.23777748193364407539882315937, 8.043773473711925219962196281201, 9.058631997660681547640582988283, 9.655062054452861470103965400382

Graph of the $Z$-function along the critical line