Properties

Label 2-600-1.1-c3-0-24
Degree $2$
Conductor $600$
Sign $-1$
Analytic cond. $35.4011$
Root an. cond. $5.94988$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 19·7-s + 9·9-s + 22·11-s + 13-s − 58·17-s − 53·19-s − 57·21-s + 58·23-s + 27·27-s + 22·29-s − 35·31-s + 66·33-s − 270·37-s + 3·39-s − 468·41-s − 431·43-s − 230·47-s + 18·49-s − 174·51-s − 159·57-s + 446·59-s + 127·61-s − 171·63-s − 811·67-s + 174·69-s + 36·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.02·7-s + 1/3·9-s + 0.603·11-s + 0.0213·13-s − 0.827·17-s − 0.639·19-s − 0.592·21-s + 0.525·23-s + 0.192·27-s + 0.140·29-s − 0.202·31-s + 0.348·33-s − 1.19·37-s + 0.0123·39-s − 1.78·41-s − 1.52·43-s − 0.713·47-s + 0.0524·49-s − 0.477·51-s − 0.369·57-s + 0.984·59-s + 0.266·61-s − 0.341·63-s − 1.47·67-s + 0.303·69-s + 0.0601·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(35.4011\)
Root analytic conductor: \(5.94988\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 600,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 \)
good7 \( 1 + 19 T + p^{3} T^{2} \)
11 \( 1 - 2 p T + p^{3} T^{2} \)
13 \( 1 - T + p^{3} T^{2} \)
17 \( 1 + 58 T + p^{3} T^{2} \)
19 \( 1 + 53 T + p^{3} T^{2} \)
23 \( 1 - 58 T + p^{3} T^{2} \)
29 \( 1 - 22 T + p^{3} T^{2} \)
31 \( 1 + 35 T + p^{3} T^{2} \)
37 \( 1 + 270 T + p^{3} T^{2} \)
41 \( 1 + 468 T + p^{3} T^{2} \)
43 \( 1 + 431 T + p^{3} T^{2} \)
47 \( 1 + 230 T + p^{3} T^{2} \)
53 \( 1 + p^{3} T^{2} \)
59 \( 1 - 446 T + p^{3} T^{2} \)
61 \( 1 - 127 T + p^{3} T^{2} \)
67 \( 1 + 811 T + p^{3} T^{2} \)
71 \( 1 - 36 T + p^{3} T^{2} \)
73 \( 1 - 522 T + p^{3} T^{2} \)
79 \( 1 - 1368 T + p^{3} T^{2} \)
83 \( 1 + 1138 T + p^{3} T^{2} \)
89 \( 1 - 144 T + p^{3} T^{2} \)
97 \( 1 + 1079 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.749464304629879540523072447929, −8.937882788002441368493599278965, −8.275377707739904371508814221724, −6.87096297174694726630498678436, −6.55052805163720812530713994647, −5.10516993583275439241068301798, −3.90193928019172518264515322207, −3.05305308136204721753667325825, −1.74974125783886608431223465159, 0, 1.74974125783886608431223465159, 3.05305308136204721753667325825, 3.90193928019172518264515322207, 5.10516993583275439241068301798, 6.55052805163720812530713994647, 6.87096297174694726630498678436, 8.275377707739904371508814221724, 8.937882788002441368493599278965, 9.749464304629879540523072447929

Graph of the $Z$-function along the critical line