Properties

Label 2-600-1.1-c3-0-23
Degree $2$
Conductor $600$
Sign $-1$
Analytic cond. $35.4011$
Root an. cond. $5.94988$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 21.8·7-s + 9·9-s + 54.6·11-s − 82.7·13-s + 100.·17-s − 84.1·19-s − 65.6·21-s + 0.880·23-s + 27·27-s − 99.1·29-s − 78.9·31-s + 163.·33-s − 390.·37-s − 248.·39-s + 104.·41-s − 241.·43-s − 512.·47-s + 135.·49-s + 301.·51-s − 284.·53-s − 252.·57-s − 709.·59-s + 470.·61-s − 196.·63-s + 667.·67-s + 2.64·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.18·7-s + 0.333·9-s + 1.49·11-s − 1.76·13-s + 1.43·17-s − 1.01·19-s − 0.682·21-s + 0.00798·23-s + 0.192·27-s − 0.634·29-s − 0.457·31-s + 0.864·33-s − 1.73·37-s − 1.01·39-s + 0.398·41-s − 0.856·43-s − 1.59·47-s + 0.395·49-s + 0.827·51-s − 0.737·53-s − 0.586·57-s − 1.56·59-s + 0.987·61-s − 0.393·63-s + 1.21·67-s + 0.00460·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(35.4011\)
Root analytic conductor: \(5.94988\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 600,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
5 \( 1 \)
good7 \( 1 + 21.8T + 343T^{2} \)
11 \( 1 - 54.6T + 1.33e3T^{2} \)
13 \( 1 + 82.7T + 2.19e3T^{2} \)
17 \( 1 - 100.T + 4.91e3T^{2} \)
19 \( 1 + 84.1T + 6.85e3T^{2} \)
23 \( 1 - 0.880T + 1.21e4T^{2} \)
29 \( 1 + 99.1T + 2.43e4T^{2} \)
31 \( 1 + 78.9T + 2.97e4T^{2} \)
37 \( 1 + 390.T + 5.06e4T^{2} \)
41 \( 1 - 104.T + 6.89e4T^{2} \)
43 \( 1 + 241.T + 7.95e4T^{2} \)
47 \( 1 + 512.T + 1.03e5T^{2} \)
53 \( 1 + 284.T + 1.48e5T^{2} \)
59 \( 1 + 709.T + 2.05e5T^{2} \)
61 \( 1 - 470.T + 2.26e5T^{2} \)
67 \( 1 - 667.T + 3.00e5T^{2} \)
71 \( 1 + 51.5T + 3.57e5T^{2} \)
73 \( 1 + 371.T + 3.89e5T^{2} \)
79 \( 1 + 79.3T + 4.93e5T^{2} \)
83 \( 1 - 682.T + 5.71e5T^{2} \)
89 \( 1 - 628.T + 7.04e5T^{2} \)
97 \( 1 + 1.51e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.637291230322948217250562097059, −9.228865364116540580154583583400, −8.057538403245950087086832042302, −7.05449882990248357558526681859, −6.42885222935931438400339380629, −5.13442370683001861971615199065, −3.86499712189812405355120205539, −3.08371941992327620788165940138, −1.74000678671098004397602841448, 0, 1.74000678671098004397602841448, 3.08371941992327620788165940138, 3.86499712189812405355120205539, 5.13442370683001861971615199065, 6.42885222935931438400339380629, 7.05449882990248357558526681859, 8.057538403245950087086832042302, 9.228865364116540580154583583400, 9.637291230322948217250562097059

Graph of the $Z$-function along the critical line