L(s) = 1 | − 3·3-s + 4·7-s + 9·9-s − 28·11-s − 16·13-s + 108·17-s + 32·19-s − 12·21-s − 28·23-s − 27·27-s − 238·29-s − 180·31-s + 84·33-s − 40·37-s + 48·39-s + 422·41-s + 276·43-s + 60·47-s − 327·49-s − 324·51-s + 220·53-s − 96·57-s − 804·59-s − 358·61-s + 36·63-s − 884·67-s + 84·69-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.215·7-s + 1/3·9-s − 0.767·11-s − 0.341·13-s + 1.54·17-s + 0.386·19-s − 0.124·21-s − 0.253·23-s − 0.192·27-s − 1.52·29-s − 1.04·31-s + 0.443·33-s − 0.177·37-s + 0.197·39-s + 1.60·41-s + 0.978·43-s + 0.186·47-s − 0.953·49-s − 0.889·51-s + 0.570·53-s − 0.223·57-s − 1.77·59-s − 0.751·61-s + 0.0719·63-s − 1.61·67-s + 0.146·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + p T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 4 T + p^{3} T^{2} \) |
| 11 | \( 1 + 28 T + p^{3} T^{2} \) |
| 13 | \( 1 + 16 T + p^{3} T^{2} \) |
| 17 | \( 1 - 108 T + p^{3} T^{2} \) |
| 19 | \( 1 - 32 T + p^{3} T^{2} \) |
| 23 | \( 1 + 28 T + p^{3} T^{2} \) |
| 29 | \( 1 + 238 T + p^{3} T^{2} \) |
| 31 | \( 1 + 180 T + p^{3} T^{2} \) |
| 37 | \( 1 + 40 T + p^{3} T^{2} \) |
| 41 | \( 1 - 422 T + p^{3} T^{2} \) |
| 43 | \( 1 - 276 T + p^{3} T^{2} \) |
| 47 | \( 1 - 60 T + p^{3} T^{2} \) |
| 53 | \( 1 - 220 T + p^{3} T^{2} \) |
| 59 | \( 1 + 804 T + p^{3} T^{2} \) |
| 61 | \( 1 + 358 T + p^{3} T^{2} \) |
| 67 | \( 1 + 884 T + p^{3} T^{2} \) |
| 71 | \( 1 + 64 T + p^{3} T^{2} \) |
| 73 | \( 1 + 152 T + p^{3} T^{2} \) |
| 79 | \( 1 + 932 T + p^{3} T^{2} \) |
| 83 | \( 1 + 1292 T + p^{3} T^{2} \) |
| 89 | \( 1 + 1146 T + p^{3} T^{2} \) |
| 97 | \( 1 - 824 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.916623464148631512260578650215, −9.100083611837368399649501192160, −7.70644995565744794236562897455, −7.41765567078002071232333520446, −5.87985981768898336605341199268, −5.40485076027036678205375480861, −4.22408626832169820163736558778, −2.96274194385189149159140772221, −1.48573217956289927080515368103, 0,
1.48573217956289927080515368103, 2.96274194385189149159140772221, 4.22408626832169820163736558778, 5.40485076027036678205375480861, 5.87985981768898336605341199268, 7.41765567078002071232333520446, 7.70644995565744794236562897455, 9.100083611837368399649501192160, 9.916623464148631512260578650215