Properties

Label 2-600-1.1-c3-0-20
Degree $2$
Conductor $600$
Sign $-1$
Analytic cond. $35.4011$
Root an. cond. $5.94988$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 4·7-s + 9·9-s − 28·11-s − 16·13-s + 108·17-s + 32·19-s − 12·21-s − 28·23-s − 27·27-s − 238·29-s − 180·31-s + 84·33-s − 40·37-s + 48·39-s + 422·41-s + 276·43-s + 60·47-s − 327·49-s − 324·51-s + 220·53-s − 96·57-s − 804·59-s − 358·61-s + 36·63-s − 884·67-s + 84·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.215·7-s + 1/3·9-s − 0.767·11-s − 0.341·13-s + 1.54·17-s + 0.386·19-s − 0.124·21-s − 0.253·23-s − 0.192·27-s − 1.52·29-s − 1.04·31-s + 0.443·33-s − 0.177·37-s + 0.197·39-s + 1.60·41-s + 0.978·43-s + 0.186·47-s − 0.953·49-s − 0.889·51-s + 0.570·53-s − 0.223·57-s − 1.77·59-s − 0.751·61-s + 0.0719·63-s − 1.61·67-s + 0.146·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(35.4011\)
Root analytic conductor: \(5.94988\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 600,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 \)
good7 \( 1 - 4 T + p^{3} T^{2} \)
11 \( 1 + 28 T + p^{3} T^{2} \)
13 \( 1 + 16 T + p^{3} T^{2} \)
17 \( 1 - 108 T + p^{3} T^{2} \)
19 \( 1 - 32 T + p^{3} T^{2} \)
23 \( 1 + 28 T + p^{3} T^{2} \)
29 \( 1 + 238 T + p^{3} T^{2} \)
31 \( 1 + 180 T + p^{3} T^{2} \)
37 \( 1 + 40 T + p^{3} T^{2} \)
41 \( 1 - 422 T + p^{3} T^{2} \)
43 \( 1 - 276 T + p^{3} T^{2} \)
47 \( 1 - 60 T + p^{3} T^{2} \)
53 \( 1 - 220 T + p^{3} T^{2} \)
59 \( 1 + 804 T + p^{3} T^{2} \)
61 \( 1 + 358 T + p^{3} T^{2} \)
67 \( 1 + 884 T + p^{3} T^{2} \)
71 \( 1 + 64 T + p^{3} T^{2} \)
73 \( 1 + 152 T + p^{3} T^{2} \)
79 \( 1 + 932 T + p^{3} T^{2} \)
83 \( 1 + 1292 T + p^{3} T^{2} \)
89 \( 1 + 1146 T + p^{3} T^{2} \)
97 \( 1 - 824 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.916623464148631512260578650215, −9.100083611837368399649501192160, −7.70644995565744794236562897455, −7.41765567078002071232333520446, −5.87985981768898336605341199268, −5.40485076027036678205375480861, −4.22408626832169820163736558778, −2.96274194385189149159140772221, −1.48573217956289927080515368103, 0, 1.48573217956289927080515368103, 2.96274194385189149159140772221, 4.22408626832169820163736558778, 5.40485076027036678205375480861, 5.87985981768898336605341199268, 7.41765567078002071232333520446, 7.70644995565744794236562897455, 9.100083611837368399649501192160, 9.916623464148631512260578650215

Graph of the $Z$-function along the critical line