Properties

Label 2-600-1.1-c3-0-2
Degree $2$
Conductor $600$
Sign $1$
Analytic cond. $35.4011$
Root an. cond. $5.94988$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 20·7-s + 9·9-s + 16·11-s − 58·13-s − 38·17-s + 4·19-s + 60·21-s + 80·23-s − 27·27-s + 82·29-s − 8·31-s − 48·33-s − 426·37-s + 174·39-s − 246·41-s + 524·43-s + 464·47-s + 57·49-s + 114·51-s + 702·53-s − 12·57-s − 592·59-s + 574·61-s − 180·63-s + 172·67-s − 240·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.07·7-s + 1/3·9-s + 0.438·11-s − 1.23·13-s − 0.542·17-s + 0.0482·19-s + 0.623·21-s + 0.725·23-s − 0.192·27-s + 0.525·29-s − 0.0463·31-s − 0.253·33-s − 1.89·37-s + 0.714·39-s − 0.937·41-s + 1.85·43-s + 1.44·47-s + 0.166·49-s + 0.313·51-s + 1.81·53-s − 0.0278·57-s − 1.30·59-s + 1.20·61-s − 0.359·63-s + 0.313·67-s − 0.418·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(35.4011\)
Root analytic conductor: \(5.94988\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 600,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.042813389\)
\(L(\frac12)\) \(\approx\) \(1.042813389\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 \)
good7 \( 1 + 20 T + p^{3} T^{2} \)
11 \( 1 - 16 T + p^{3} T^{2} \)
13 \( 1 + 58 T + p^{3} T^{2} \)
17 \( 1 + 38 T + p^{3} T^{2} \)
19 \( 1 - 4 T + p^{3} T^{2} \)
23 \( 1 - 80 T + p^{3} T^{2} \)
29 \( 1 - 82 T + p^{3} T^{2} \)
31 \( 1 + 8 T + p^{3} T^{2} \)
37 \( 1 + 426 T + p^{3} T^{2} \)
41 \( 1 + 6 p T + p^{3} T^{2} \)
43 \( 1 - 524 T + p^{3} T^{2} \)
47 \( 1 - 464 T + p^{3} T^{2} \)
53 \( 1 - 702 T + p^{3} T^{2} \)
59 \( 1 + 592 T + p^{3} T^{2} \)
61 \( 1 - 574 T + p^{3} T^{2} \)
67 \( 1 - 172 T + p^{3} T^{2} \)
71 \( 1 - 768 T + p^{3} T^{2} \)
73 \( 1 - 558 T + p^{3} T^{2} \)
79 \( 1 - 408 T + p^{3} T^{2} \)
83 \( 1 + 164 T + p^{3} T^{2} \)
89 \( 1 + 510 T + p^{3} T^{2} \)
97 \( 1 + 514 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23965090362842956723123245373, −9.500284390924219199191105834868, −8.690171446706379576113595608279, −7.23080795725470797881076881103, −6.78108586531915716653875275574, −5.71686697259282903780373595666, −4.74648194001397939375542189649, −3.58810115669747616246960065486, −2.33830843650467447170750058822, −0.60587640455480600067627560368, 0.60587640455480600067627560368, 2.33830843650467447170750058822, 3.58810115669747616246960065486, 4.74648194001397939375542189649, 5.71686697259282903780373595666, 6.78108586531915716653875275574, 7.23080795725470797881076881103, 8.690171446706379576113595608279, 9.500284390924219199191105834868, 10.23965090362842956723123245373

Graph of the $Z$-function along the critical line