L(s) = 1 | + (2 + 2.23i)3-s + 2.23i·5-s + 2·7-s + (−1.00 + 8.94i)9-s − 13.4i·11-s + 8·13-s + (−5.00 + 4.47i)15-s − 13.4i·17-s − 34·19-s + (4 + 4.47i)21-s − 40.2i·23-s − 5.00·25-s + (−22.0 + 15.6i)27-s + 40.2i·29-s + 14·31-s + ⋯ |
L(s) = 1 | + (0.666 + 0.745i)3-s + 0.447i·5-s + 0.285·7-s + (−0.111 + 0.993i)9-s − 1.21i·11-s + 0.615·13-s + (−0.333 + 0.298i)15-s − 0.789i·17-s − 1.78·19-s + (0.190 + 0.212i)21-s − 1.74i·23-s − 0.200·25-s + (−0.814 + 0.579i)27-s + 1.38i·29-s + 0.451·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.745 - 0.666i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.745 - 0.666i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.32431 + 0.505842i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.32431 + 0.505842i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2 - 2.23i)T \) |
| 5 | \( 1 - 2.23iT \) |
good | 7 | \( 1 - 2T + 49T^{2} \) |
| 11 | \( 1 + 13.4iT - 121T^{2} \) |
| 13 | \( 1 - 8T + 169T^{2} \) |
| 17 | \( 1 + 13.4iT - 289T^{2} \) |
| 19 | \( 1 + 34T + 361T^{2} \) |
| 23 | \( 1 + 40.2iT - 529T^{2} \) |
| 29 | \( 1 - 40.2iT - 841T^{2} \) |
| 31 | \( 1 - 14T + 961T^{2} \) |
| 37 | \( 1 - 56T + 1.36e3T^{2} \) |
| 41 | \( 1 - 26.8iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 8T + 1.84e3T^{2} \) |
| 47 | \( 1 - 40.2iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 40.2iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 13.4iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 46T + 3.72e3T^{2} \) |
| 67 | \( 1 - 32T + 4.48e3T^{2} \) |
| 71 | \( 1 + 53.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 106T + 5.32e3T^{2} \) |
| 79 | \( 1 + 22T + 6.24e3T^{2} \) |
| 83 | \( 1 - 120. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 107. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 122T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.79968700639781218625433619833, −14.15359525255581184575442336732, −12.98218510276332119757938288328, −11.16421606278365258658772828018, −10.53223108714509347242375660529, −8.985168264332896447058075911239, −8.127246269305760822398265053348, −6.29280108209387160444954218493, −4.47219991278825650452245220563, −2.87606472706765793080168502350,
1.89223480576888286366263656030, 4.14352290029282797770081817173, 6.18085250429145341658873508604, 7.63103121951426138730849172186, 8.631354096503470311805115270511, 9.883757467932475121419756034879, 11.55079898514535797934876780922, 12.73072319139510669475686442289, 13.40238793048262111745947212203, 14.77466625208214471714713709051