Properties

Label 2-6-1.1-c13-0-0
Degree $2$
Conductor $6$
Sign $1$
Analytic cond. $6.43385$
Root an. cond. $2.53650$
Motivic weight $13$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 64·2-s − 729·3-s + 4.09e3·4-s + 5.46e4·5-s − 4.66e4·6-s + 1.76e5·7-s + 2.62e5·8-s + 5.31e5·9-s + 3.49e6·10-s + 6.61e6·11-s − 2.98e6·12-s − 2.40e7·13-s + 1.12e7·14-s − 3.98e7·15-s + 1.67e7·16-s − 1.54e8·17-s + 3.40e7·18-s + 1.90e8·19-s + 2.23e8·20-s − 1.28e8·21-s + 4.23e8·22-s − 3.52e8·23-s − 1.91e8·24-s + 1.76e9·25-s − 1.53e9·26-s − 3.87e8·27-s + 7.22e8·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.56·5-s − 0.408·6-s + 0.566·7-s + 0.353·8-s + 1/3·9-s + 1.10·10-s + 1.12·11-s − 0.288·12-s − 1.38·13-s + 0.400·14-s − 0.903·15-s + 1/4·16-s − 1.55·17-s + 0.235·18-s + 0.926·19-s + 0.782·20-s − 0.327·21-s + 0.795·22-s − 0.497·23-s − 0.204·24-s + 1.44·25-s − 0.976·26-s − 0.192·27-s + 0.283·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6\)    =    \(2 \cdot 3\)
Sign: $1$
Analytic conductor: \(6.43385\)
Root analytic conductor: \(2.53650\)
Motivic weight: \(13\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6,\ (\ :13/2),\ 1)\)

Particular Values

\(L(7)\) \(\approx\) \(2.571992364\)
\(L(\frac12)\) \(\approx\) \(2.571992364\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{6} T \)
3 \( 1 + p^{6} T \)
good5 \( 1 - 54654 T + p^{13} T^{2} \)
7 \( 1 - 176336 T + p^{13} T^{2} \)
11 \( 1 - 6612420 T + p^{13} T^{2} \)
13 \( 1 + 24028978 T + p^{13} T^{2} \)
17 \( 1 + 154665054 T + p^{13} T^{2} \)
19 \( 1 - 190034876 T + p^{13} T^{2} \)
23 \( 1 + 352957800 T + p^{13} T^{2} \)
29 \( 1 + 2804086266 T + p^{13} T^{2} \)
31 \( 1 - 2763661208 T + p^{13} T^{2} \)
37 \( 1 - 20030257622 T + p^{13} T^{2} \)
41 \( 1 + 39624547206 T + p^{13} T^{2} \)
43 \( 1 + 81486174844 T + p^{13} T^{2} \)
47 \( 1 + 34136017440 T + p^{13} T^{2} \)
53 \( 1 + 21810829986 T + p^{13} T^{2} \)
59 \( 1 - 229219661220 T + p^{13} T^{2} \)
61 \( 1 - 9799736750 T + p^{13} T^{2} \)
67 \( 1 - 789042707996 T + p^{13} T^{2} \)
71 \( 1 + 369504705240 T + p^{13} T^{2} \)
73 \( 1 + 693077725078 T + p^{13} T^{2} \)
79 \( 1 - 2231309995208 T + p^{13} T^{2} \)
83 \( 1 - 2084328707772 T + p^{13} T^{2} \)
89 \( 1 - 2221961096538 T + p^{13} T^{2} \)
97 \( 1 - 10268379896642 T + p^{13} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.16538493098578525289559102984, −17.85344691463666233585676770272, −16.89588426415504340344338865514, −14.69767803193811730583335758354, −13.39014379752963156037473788113, −11.63420742543436054976583208863, −9.738638429771938790190229427093, −6.55835356163152473822760028891, −4.97443916209920337277647780904, −1.89534149440807855302493492403, 1.89534149440807855302493492403, 4.97443916209920337277647780904, 6.55835356163152473822760028891, 9.738638429771938790190229427093, 11.63420742543436054976583208863, 13.39014379752963156037473788113, 14.69767803193811730583335758354, 16.89588426415504340344338865514, 17.85344691463666233585676770272, 20.16538493098578525289559102984

Graph of the $Z$-function along the critical line