Properties

Label 2-5e4-125.104-c1-0-15
Degree $2$
Conductor $625$
Sign $-0.180 - 0.983i$
Analytic cond. $4.99065$
Root an. cond. $2.23397$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.415 + 1.61i)2-s + (1.28 − 0.244i)3-s + (−0.694 + 0.381i)4-s + (0.929 + 1.97i)6-s + (−0.910 + 1.25i)7-s + (1.38 + 1.47i)8-s + (−1.20 + 0.475i)9-s + (4.66 − 1.19i)11-s + (−0.797 + 0.659i)12-s + (0.940 + 2.37i)13-s + (−2.40 − 0.952i)14-s + (−2.65 + 4.18i)16-s + (0.100 − 0.181i)17-s + (−1.26 − 1.74i)18-s + (0.540 − 2.83i)19-s + ⋯
L(s)  = 1  + (0.293 + 1.14i)2-s + (0.741 − 0.141i)3-s + (−0.347 + 0.190i)4-s + (0.379 + 0.806i)6-s + (−0.344 + 0.473i)7-s + (0.488 + 0.520i)8-s + (−0.400 + 0.158i)9-s + (1.40 − 0.360i)11-s + (−0.230 + 0.190i)12-s + (0.260 + 0.658i)13-s + (−0.642 − 0.254i)14-s + (−0.663 + 1.04i)16-s + (0.0242 − 0.0441i)17-s + (−0.299 − 0.411i)18-s + (0.124 − 0.650i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.180 - 0.983i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.180 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(625\)    =    \(5^{4}\)
Sign: $-0.180 - 0.983i$
Analytic conductor: \(4.99065\)
Root analytic conductor: \(2.23397\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{625} (274, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 625,\ (\ :1/2),\ -0.180 - 0.983i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.49997 + 1.80082i\)
\(L(\frac12)\) \(\approx\) \(1.49997 + 1.80082i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
good2 \( 1 + (-0.415 - 1.61i)T + (-1.75 + 0.963i)T^{2} \)
3 \( 1 + (-1.28 + 0.244i)T + (2.78 - 1.10i)T^{2} \)
7 \( 1 + (0.910 - 1.25i)T + (-2.16 - 6.65i)T^{2} \)
11 \( 1 + (-4.66 + 1.19i)T + (9.63 - 5.29i)T^{2} \)
13 \( 1 + (-0.940 - 2.37i)T + (-9.47 + 8.89i)T^{2} \)
17 \( 1 + (-0.100 + 0.181i)T + (-9.10 - 14.3i)T^{2} \)
19 \( 1 + (-0.540 + 2.83i)T + (-17.6 - 6.99i)T^{2} \)
23 \( 1 + (-3.38 - 0.213i)T + (22.8 + 2.88i)T^{2} \)
29 \( 1 + (4.38 + 0.553i)T + (28.0 + 7.21i)T^{2} \)
31 \( 1 + (7.06 + 3.88i)T + (16.6 + 26.1i)T^{2} \)
37 \( 1 + (-9.09 - 5.77i)T + (15.7 + 33.4i)T^{2} \)
41 \( 1 + (-0.203 - 3.24i)T + (-40.6 + 5.13i)T^{2} \)
43 \( 1 + (-1.30 + 0.423i)T + (34.7 - 25.2i)T^{2} \)
47 \( 1 + (-4.98 + 5.30i)T + (-2.95 - 46.9i)T^{2} \)
53 \( 1 + (9.10 + 4.28i)T + (33.7 + 40.8i)T^{2} \)
59 \( 1 + (-1.73 - 2.09i)T + (-11.0 + 57.9i)T^{2} \)
61 \( 1 + (-0.932 + 14.8i)T + (-60.5 - 7.64i)T^{2} \)
67 \( 1 + (0.647 + 5.12i)T + (-64.8 + 16.6i)T^{2} \)
71 \( 1 + (5.63 + 5.29i)T + (4.45 + 70.8i)T^{2} \)
73 \( 1 + (-2.91 - 2.41i)T + (13.6 + 71.7i)T^{2} \)
79 \( 1 + (2.00 + 10.5i)T + (-73.4 + 29.0i)T^{2} \)
83 \( 1 + (2.44 + 0.465i)T + (77.1 + 30.5i)T^{2} \)
89 \( 1 + (-5.29 + 6.40i)T + (-16.6 - 87.4i)T^{2} \)
97 \( 1 + (-0.189 + 1.49i)T + (-93.9 - 24.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.18550397743293728879609472384, −9.392828373510817544709748310621, −9.036901819642217949357171649239, −8.118805701558788818846309961378, −7.22323591781387081438025867300, −6.38380983237862810302457885178, −5.68743666813787687397720359979, −4.46151882377355349268025365479, −3.25891483105700976881074612853, −1.90083515913746162139515973541, 1.24461366785763000959699111850, 2.60096718081376166960294004865, 3.63073852033256305410624312375, 4.07312529999926086355810506814, 5.69563763738671715458943312253, 6.91180510543565481771517404931, 7.75811480018597719214730890907, 9.058143002366971917402383470238, 9.479264689985693950814230790228, 10.51558821782431422753112181913

Graph of the $Z$-function along the critical line