Properties

Label 2-5e3-125.106-c1-0-9
Degree $2$
Conductor $125$
Sign $-0.305 + 0.952i$
Analytic cond. $0.998130$
Root an. cond. $0.999064$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.27 − 2.00i)2-s + (−1.02 + 0.962i)3-s + (−1.55 − 3.29i)4-s + (0.193 − 2.22i)5-s + (0.626 + 3.28i)6-s + (1.19 − 0.869i)7-s + (−3.87 − 0.489i)8-s + (−0.0641 + 1.01i)9-s + (−4.22 − 3.22i)10-s + (−1.09 + 1.72i)11-s + (4.76 + 1.88i)12-s + (−0.0311 + 0.495i)13-s + (−0.220 − 3.50i)14-s + (1.94 + 2.47i)15-s + (−1.27 + 1.53i)16-s + (−0.275 + 0.585i)17-s + ⋯
L(s)  = 1  + (0.900 − 1.41i)2-s + (−0.592 + 0.555i)3-s + (−0.776 − 1.64i)4-s + (0.0865 − 0.996i)5-s + (0.255 + 1.34i)6-s + (0.452 − 0.328i)7-s + (−1.37 − 0.173i)8-s + (−0.0213 + 0.339i)9-s + (−1.33 − 1.01i)10-s + (−0.330 + 0.520i)11-s + (1.37 + 0.544i)12-s + (−0.00864 + 0.137i)13-s + (−0.0589 − 0.937i)14-s + (0.502 + 0.637i)15-s + (−0.318 + 0.384i)16-s + (−0.0667 + 0.141i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 125 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.305 + 0.952i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 125 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.305 + 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(125\)    =    \(5^{3}\)
Sign: $-0.305 + 0.952i$
Analytic conductor: \(0.998130\)
Root analytic conductor: \(0.999064\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{125} (106, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 125,\ (\ :1/2),\ -0.305 + 0.952i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.816277 - 1.11901i\)
\(L(\frac12)\) \(\approx\) \(0.816277 - 1.11901i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-0.193 + 2.22i)T \)
good2 \( 1 + (-1.27 + 2.00i)T + (-0.851 - 1.80i)T^{2} \)
3 \( 1 + (1.02 - 0.962i)T + (0.188 - 2.99i)T^{2} \)
7 \( 1 + (-1.19 + 0.869i)T + (2.16 - 6.65i)T^{2} \)
11 \( 1 + (1.09 - 1.72i)T + (-4.68 - 9.95i)T^{2} \)
13 \( 1 + (0.0311 - 0.495i)T + (-12.8 - 1.62i)T^{2} \)
17 \( 1 + (0.275 - 0.585i)T + (-10.8 - 13.0i)T^{2} \)
19 \( 1 + (-6.12 - 5.75i)T + (1.19 + 18.9i)T^{2} \)
23 \( 1 + (-4.49 - 1.15i)T + (20.1 + 11.0i)T^{2} \)
29 \( 1 + (5.77 + 3.17i)T + (15.5 + 24.4i)T^{2} \)
31 \( 1 + (3.50 - 7.43i)T + (-19.7 - 23.8i)T^{2} \)
37 \( 1 + (-3.40 + 4.11i)T + (-6.93 - 36.3i)T^{2} \)
41 \( 1 + (8.24 - 2.11i)T + (35.9 - 19.7i)T^{2} \)
43 \( 1 + (-0.692 + 2.13i)T + (-34.7 - 25.2i)T^{2} \)
47 \( 1 + (3.77 - 0.476i)T + (45.5 - 11.6i)T^{2} \)
53 \( 1 + (-2.60 + 13.6i)T + (-49.2 - 19.5i)T^{2} \)
59 \( 1 + (5.50 + 2.17i)T + (43.0 + 40.3i)T^{2} \)
61 \( 1 + (-3.60 - 0.925i)T + (53.4 + 29.3i)T^{2} \)
67 \( 1 + (7.73 - 4.25i)T + (35.9 - 56.5i)T^{2} \)
71 \( 1 + (-11.6 + 1.46i)T + (68.7 - 17.6i)T^{2} \)
73 \( 1 + (7.46 - 2.95i)T + (53.2 - 49.9i)T^{2} \)
79 \( 1 + (-1.47 + 1.38i)T + (4.96 - 78.8i)T^{2} \)
83 \( 1 + (-10.7 - 10.1i)T + (5.21 + 82.8i)T^{2} \)
89 \( 1 + (-12.3 + 4.89i)T + (64.8 - 60.9i)T^{2} \)
97 \( 1 + (1.15 + 0.633i)T + (51.9 + 81.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92094648513313087901365241231, −11.98464734418224120687312015816, −11.23459832803683186451066522686, −10.27722350574827011332059930660, −9.471506944819161512562272602278, −7.79934327638678890253351020603, −5.43235157549015221329966305754, −4.94361896098094216891991019759, −3.76113729350178289810944269258, −1.66520141589999034517893803833, 3.26400172356835298575951542910, 5.11150985607247848612828900640, 5.99415997221431360640247058660, 6.97556719518386496930027803824, 7.66220632538985130042390858950, 9.178466660098613897276402918608, 11.01385641861982328370966826624, 11.80450903038255503556242183322, 13.12363104894184849591624960367, 13.72361301387009220377557184527

Graph of the $Z$-function along the critical line