Properties

Label 2-5e2-25.8-c2-0-2
Degree $2$
Conductor $25$
Sign $0.868 - 0.494i$
Analytic cond. $0.681200$
Root an. cond. $0.825348$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.70 + 1.37i)2-s + (−4.42 − 0.701i)3-s + (3.04 + 4.19i)4-s + (1.95 − 4.60i)5-s + (−10.9 − 7.98i)6-s + (−4.77 + 4.77i)7-s + (0.561 + 3.54i)8-s + (10.5 + 3.42i)9-s + (11.6 − 9.74i)10-s + (3.84 + 11.8i)11-s + (−10.5 − 20.7i)12-s + (−1.05 + 0.536i)13-s + (−19.4 + 6.32i)14-s + (−11.8 + 19.0i)15-s + (3.04 − 9.37i)16-s + (−4.59 + 0.727i)17-s + ⋯
L(s)  = 1  + (1.35 + 0.687i)2-s + (−1.47 − 0.233i)3-s + (0.761 + 1.04i)4-s + (0.390 − 0.920i)5-s + (−1.83 − 1.33i)6-s + (−0.682 + 0.682i)7-s + (0.0701 + 0.443i)8-s + (1.17 + 0.380i)9-s + (1.16 − 0.974i)10-s + (0.349 + 1.07i)11-s + (−0.879 − 1.72i)12-s + (−0.0809 + 0.0412i)13-s + (−1.39 + 0.451i)14-s + (−0.790 + 1.26i)15-s + (0.190 − 0.586i)16-s + (−0.270 + 0.0428i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.868 - 0.494i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.868 - 0.494i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25\)    =    \(5^{2}\)
Sign: $0.868 - 0.494i$
Analytic conductor: \(0.681200\)
Root analytic conductor: \(0.825348\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{25} (8, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 25,\ (\ :1),\ 0.868 - 0.494i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.14922 + 0.304370i\)
\(L(\frac12)\) \(\approx\) \(1.14922 + 0.304370i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-1.95 + 4.60i)T \)
good2 \( 1 + (-2.70 - 1.37i)T + (2.35 + 3.23i)T^{2} \)
3 \( 1 + (4.42 + 0.701i)T + (8.55 + 2.78i)T^{2} \)
7 \( 1 + (4.77 - 4.77i)T - 49iT^{2} \)
11 \( 1 + (-3.84 - 11.8i)T + (-97.8 + 71.1i)T^{2} \)
13 \( 1 + (1.05 - 0.536i)T + (99.3 - 136. i)T^{2} \)
17 \( 1 + (4.59 - 0.727i)T + (274. - 89.3i)T^{2} \)
19 \( 1 + (-12.8 + 17.6i)T + (-111. - 343. i)T^{2} \)
23 \( 1 + (4.03 - 7.92i)T + (-310. - 427. i)T^{2} \)
29 \( 1 + (-5.42 - 7.47i)T + (-259. + 799. i)T^{2} \)
31 \( 1 + (25.3 + 18.3i)T + (296. + 913. i)T^{2} \)
37 \( 1 + (-6.47 - 12.7i)T + (-804. + 1.10e3i)T^{2} \)
41 \( 1 + (16.8 - 51.9i)T + (-1.35e3 - 988. i)T^{2} \)
43 \( 1 + (36.1 + 36.1i)T + 1.84e3iT^{2} \)
47 \( 1 + (0.703 - 4.43i)T + (-2.10e3 - 682. i)T^{2} \)
53 \( 1 + (-69.2 - 10.9i)T + (2.67e3 + 868. i)T^{2} \)
59 \( 1 + (67.9 + 22.0i)T + (2.81e3 + 2.04e3i)T^{2} \)
61 \( 1 + (-15.0 - 46.4i)T + (-3.01e3 + 2.18e3i)T^{2} \)
67 \( 1 + (-79.5 + 12.5i)T + (4.26e3 - 1.38e3i)T^{2} \)
71 \( 1 + (34.9 - 25.3i)T + (1.55e3 - 4.79e3i)T^{2} \)
73 \( 1 + (-27.3 + 53.6i)T + (-3.13e3 - 4.31e3i)T^{2} \)
79 \( 1 + (27.4 + 37.8i)T + (-1.92e3 + 5.93e3i)T^{2} \)
83 \( 1 + (-17.1 - 108. i)T + (-6.55e3 + 2.12e3i)T^{2} \)
89 \( 1 + (-63.0 + 20.4i)T + (6.40e3 - 4.65e3i)T^{2} \)
97 \( 1 + (-8.99 + 56.7i)T + (-8.94e3 - 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.08526460403164668439191811256, −16.19899460296504418336138653913, −15.21130472555166873605888480452, −13.40101627008352333532351247125, −12.52892855135288227940506605678, −11.79163291488912233495268733312, −9.582404787379575785360509344800, −6.89036643746500892253926257780, −5.75288200614606951911148458013, −4.75238264214213962287153070750, 3.62115111574383181618291944398, 5.55400752615942619827045375248, 6.56861192447885104135930906292, 10.23951242762117829005256446128, 11.04819642520134032161414822415, 12.04189602733842473300451450136, 13.40728468789511859032026970936, 14.40137502760945081317708592455, 16.06480842248407120889378601851, 17.14515420787957870369660951848

Graph of the $Z$-function along the critical line