Properties

Label 2-5e2-25.8-c2-0-1
Degree $2$
Conductor $25$
Sign $0.981 - 0.193i$
Analytic cond. $0.681200$
Root an. cond. $0.825348$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.972 + 0.495i)2-s + (0.872 + 0.138i)3-s + (−1.65 − 2.27i)4-s + (−2.66 + 4.23i)5-s + (0.779 + 0.566i)6-s + (1.62 − 1.62i)7-s + (−1.16 − 7.34i)8-s + (−7.81 − 2.54i)9-s + (−4.68 + 2.79i)10-s + (3.53 + 10.8i)11-s + (−1.12 − 2.20i)12-s + (7.63 − 3.89i)13-s + (2.39 − 0.776i)14-s + (−2.90 + 3.32i)15-s + (−0.963 + 2.96i)16-s + (25.1 − 3.98i)17-s + ⋯
L(s)  = 1  + (0.486 + 0.247i)2-s + (0.290 + 0.0460i)3-s + (−0.412 − 0.567i)4-s + (−0.532 + 0.846i)5-s + (0.129 + 0.0944i)6-s + (0.232 − 0.232i)7-s + (−0.145 − 0.917i)8-s + (−0.868 − 0.282i)9-s + (−0.468 + 0.279i)10-s + (0.320 + 0.987i)11-s + (−0.0938 − 0.184i)12-s + (0.587 − 0.299i)13-s + (0.170 − 0.0554i)14-s + (−0.193 + 0.221i)15-s + (−0.0602 + 0.185i)16-s + (1.47 − 0.234i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 - 0.193i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.981 - 0.193i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25\)    =    \(5^{2}\)
Sign: $0.981 - 0.193i$
Analytic conductor: \(0.681200\)
Root analytic conductor: \(0.825348\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{25} (8, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 25,\ (\ :1),\ 0.981 - 0.193i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.06696 + 0.104475i\)
\(L(\frac12)\) \(\approx\) \(1.06696 + 0.104475i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (2.66 - 4.23i)T \)
good2 \( 1 + (-0.972 - 0.495i)T + (2.35 + 3.23i)T^{2} \)
3 \( 1 + (-0.872 - 0.138i)T + (8.55 + 2.78i)T^{2} \)
7 \( 1 + (-1.62 + 1.62i)T - 49iT^{2} \)
11 \( 1 + (-3.53 - 10.8i)T + (-97.8 + 71.1i)T^{2} \)
13 \( 1 + (-7.63 + 3.89i)T + (99.3 - 136. i)T^{2} \)
17 \( 1 + (-25.1 + 3.98i)T + (274. - 89.3i)T^{2} \)
19 \( 1 + (5.60 - 7.71i)T + (-111. - 343. i)T^{2} \)
23 \( 1 + (5.39 - 10.5i)T + (-310. - 427. i)T^{2} \)
29 \( 1 + (-5.56 - 7.65i)T + (-259. + 799. i)T^{2} \)
31 \( 1 + (42.2 + 30.7i)T + (296. + 913. i)T^{2} \)
37 \( 1 + (21.6 + 42.4i)T + (-804. + 1.10e3i)T^{2} \)
41 \( 1 + (-16.6 + 51.2i)T + (-1.35e3 - 988. i)T^{2} \)
43 \( 1 + (-46.5 - 46.5i)T + 1.84e3iT^{2} \)
47 \( 1 + (8.92 - 56.3i)T + (-2.10e3 - 682. i)T^{2} \)
53 \( 1 + (17.7 + 2.81i)T + (2.67e3 + 868. i)T^{2} \)
59 \( 1 + (13.2 + 4.30i)T + (2.81e3 + 2.04e3i)T^{2} \)
61 \( 1 + (-0.671 - 2.06i)T + (-3.01e3 + 2.18e3i)T^{2} \)
67 \( 1 + (-116. + 18.4i)T + (4.26e3 - 1.38e3i)T^{2} \)
71 \( 1 + (57.1 - 41.5i)T + (1.55e3 - 4.79e3i)T^{2} \)
73 \( 1 + (-28.5 + 56.0i)T + (-3.13e3 - 4.31e3i)T^{2} \)
79 \( 1 + (-19.9 - 27.4i)T + (-1.92e3 + 5.93e3i)T^{2} \)
83 \( 1 + (7.27 + 45.9i)T + (-6.55e3 + 2.12e3i)T^{2} \)
89 \( 1 + (30.3 - 9.84i)T + (6.40e3 - 4.65e3i)T^{2} \)
97 \( 1 + (-10.7 + 67.9i)T + (-8.94e3 - 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.56637785696073194779884322767, −15.79404460772429460552614651469, −14.55601403703903303004904591631, −14.27257112577544554237107433762, −12.45954206701400894343342456306, −10.89094010768245319584072984656, −9.480997137802061516929645504705, −7.59625204027150619256792919361, −5.85932041774539738289013968267, −3.78551683894993114844835411628, 3.54955360399321777443784806305, 5.36767013064634774912873572999, 8.162261812495775806862796431063, 8.824028590629797724861334441435, 11.31096096045243929638036204193, 12.28373900826838493943046107872, 13.55077643561507349917876369398, 14.52941563581730054658962644616, 16.33608268298649404076872121318, 17.09031050092095685258334964200

Graph of the $Z$-function along the critical line