L(s) = 1 | + 1.08e4·3-s + 2.62e5·4-s − 1.98e6·5-s − 5.09e7·7-s − 2.70e8·9-s + 2.83e9·12-s − 2.14e10·15-s + 6.87e10·16-s − 2.16e11·17-s − 6.24e10·19-s − 5.20e11·20-s − 5.51e11·21-s + 1.26e11·25-s − 7.11e12·27-s − 1.33e13·28-s + 2.89e13·29-s + 1.01e14·35-s − 7.09e13·36-s + 6.52e14·41-s + 5.37e14·45-s + 7.42e14·48-s + 9.70e14·49-s − 2.34e15·51-s + 5.73e15·53-s − 6.74e14·57-s − 8.66e15·59-s − 5.62e15·60-s + ⋯ |
L(s) = 1 | + 0.549·3-s + 4-s − 1.01·5-s − 1.26·7-s − 0.698·9-s + 0.549·12-s − 0.558·15-s + 16-s − 1.82·17-s − 0.193·19-s − 1.01·20-s − 0.693·21-s + 0.0331·25-s − 0.932·27-s − 1.26·28-s + 1.99·29-s + 1.28·35-s − 0.698·36-s + 1.99·41-s + 0.709·45-s + 0.549·48-s + 0.596·49-s − 1.00·51-s + 1.73·53-s − 0.106·57-s − 59-s − 0.558·60-s + ⋯ |
Λ(s)=(=(59s/2ΓC(s)L(s)Λ(19−s)
Λ(s)=(=(59s/2ΓC(s+9)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
59
|
Sign: |
1
|
Analytic conductor: |
121.177 |
Root analytic conductor: |
11.0080 |
Motivic weight: |
18 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ59(58,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 59, ( :9), 1)
|
Particular Values
L(219) |
≈ |
1.569698436 |
L(21) |
≈ |
1.569698436 |
L(10) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 59 | 1+p9T |
good | 2 | (1−p9T)(1+p9T) |
| 3 | 1−10810T+p18T2 |
| 5 | 1+1985254T+p18T2 |
| 7 | 1+50982910T+p18T2 |
| 11 | (1−p9T)(1+p9T) |
| 13 | (1−p9T)(1+p9T) |
| 17 | 1+216651752350T+p18T2 |
| 19 | 1+62437037542T+p18T2 |
| 23 | (1−p9T)(1+p9T) |
| 29 | 1−28956785336138T+p18T2 |
| 31 | (1−p9T)(1+p9T) |
| 37 | (1−p9T)(1+p9T) |
| 41 | 1−652243002714578T+p18T2 |
| 43 | (1−p9T)(1+p9T) |
| 47 | (1−p9T)(1+p9T) |
| 53 | 1−5739806619558650T+p18T2 |
| 61 | (1−p9T)(1+p9T) |
| 67 | (1−p9T)(1+p9T) |
| 71 | 1+56563270329694462T+p18T2 |
| 73 | (1−p9T)(1+p9T) |
| 79 | 1−186548867397995762T+p18T2 |
| 83 | (1−p9T)(1+p9T) |
| 89 | (1−p9T)(1+p9T) |
| 97 | (1−p9T)(1+p9T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.53295753629708916888933910962, −10.56612086627466476731861376004, −9.129414633071559297767085000262, −8.088725262019185802361117462785, −6.93897317884380294862650413420, −6.09591468881936247563605981003, −4.17580313281605674370252671609, −3.06037902721396444993818262132, −2.36257247690574953730209512152, −0.52675109206253678704580272709,
0.52675109206253678704580272709, 2.36257247690574953730209512152, 3.06037902721396444993818262132, 4.17580313281605674370252671609, 6.09591468881936247563605981003, 6.93897317884380294862650413420, 8.088725262019185802361117462785, 9.129414633071559297767085000262, 10.56612086627466476731861376004, 11.53295753629708916888933910962