Properties

Label 2-59-59.58-c18-0-38
Degree $2$
Conductor $59$
Sign $1$
Analytic cond. $121.177$
Root an. cond. $11.0080$
Motivic weight $18$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.08e4·3-s + 2.62e5·4-s − 1.98e6·5-s − 5.09e7·7-s − 2.70e8·9-s + 2.83e9·12-s − 2.14e10·15-s + 6.87e10·16-s − 2.16e11·17-s − 6.24e10·19-s − 5.20e11·20-s − 5.51e11·21-s + 1.26e11·25-s − 7.11e12·27-s − 1.33e13·28-s + 2.89e13·29-s + 1.01e14·35-s − 7.09e13·36-s + 6.52e14·41-s + 5.37e14·45-s + 7.42e14·48-s + 9.70e14·49-s − 2.34e15·51-s + 5.73e15·53-s − 6.74e14·57-s − 8.66e15·59-s − 5.62e15·60-s + ⋯
L(s)  = 1  + 0.549·3-s + 4-s − 1.01·5-s − 1.26·7-s − 0.698·9-s + 0.549·12-s − 0.558·15-s + 16-s − 1.82·17-s − 0.193·19-s − 1.01·20-s − 0.693·21-s + 0.0331·25-s − 0.932·27-s − 1.26·28-s + 1.99·29-s + 1.28·35-s − 0.698·36-s + 1.99·41-s + 0.709·45-s + 0.549·48-s + 0.596·49-s − 1.00·51-s + 1.73·53-s − 0.106·57-s − 59-s − 0.558·60-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(19-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\C}(s+9) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(59\)
Sign: $1$
Analytic conductor: \(121.177\)
Root analytic conductor: \(11.0080\)
Motivic weight: \(18\)
Rational: yes
Arithmetic: yes
Character: $\chi_{59} (58, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 59,\ (\ :9),\ 1)\)

Particular Values

\(L(\frac{19}{2})\) \(\approx\) \(1.569698436\)
\(L(\frac12)\) \(\approx\) \(1.569698436\)
\(L(10)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad59 \( 1 + p^{9} T \)
good2 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
3 \( 1 - 10810 T + p^{18} T^{2} \)
5 \( 1 + 1985254 T + p^{18} T^{2} \)
7 \( 1 + 50982910 T + p^{18} T^{2} \)
11 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
13 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
17 \( 1 + 216651752350 T + p^{18} T^{2} \)
19 \( 1 + 62437037542 T + p^{18} T^{2} \)
23 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
29 \( 1 - 28956785336138 T + p^{18} T^{2} \)
31 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
37 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
41 \( 1 - 652243002714578 T + p^{18} T^{2} \)
43 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
47 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
53 \( 1 - 5739806619558650 T + p^{18} T^{2} \)
61 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
67 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
71 \( 1 + 56563270329694462 T + p^{18} T^{2} \)
73 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
79 \( 1 - 186548867397995762 T + p^{18} T^{2} \)
83 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
89 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
97 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.53295753629708916888933910962, −10.56612086627466476731861376004, −9.129414633071559297767085000262, −8.088725262019185802361117462785, −6.93897317884380294862650413420, −6.09591468881936247563605981003, −4.17580313281605674370252671609, −3.06037902721396444993818262132, −2.36257247690574953730209512152, −0.52675109206253678704580272709, 0.52675109206253678704580272709, 2.36257247690574953730209512152, 3.06037902721396444993818262132, 4.17580313281605674370252671609, 6.09591468881936247563605981003, 6.93897317884380294862650413420, 8.088725262019185802361117462785, 9.129414633071559297767085000262, 10.56612086627466476731861376004, 11.53295753629708916888933910962

Graph of the $Z$-function along the critical line