Properties

Label 2-58800-1.1-c1-0-149
Degree $2$
Conductor $58800$
Sign $-1$
Analytic cond. $469.520$
Root an. cond. $21.6684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 6·11-s + 13-s − 3·17-s − 4·19-s + 3·23-s + 27-s + 3·29-s + 5·31-s − 6·33-s − 10·37-s + 39-s − 9·41-s + 43-s − 3·51-s + 9·53-s − 4·57-s + 9·59-s − 11·61-s + 4·67-s + 3·69-s + 12·71-s + 10·73-s + 10·79-s + 81-s + 9·83-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 1.80·11-s + 0.277·13-s − 0.727·17-s − 0.917·19-s + 0.625·23-s + 0.192·27-s + 0.557·29-s + 0.898·31-s − 1.04·33-s − 1.64·37-s + 0.160·39-s − 1.40·41-s + 0.152·43-s − 0.420·51-s + 1.23·53-s − 0.529·57-s + 1.17·59-s − 1.40·61-s + 0.488·67-s + 0.361·69-s + 1.42·71-s + 1.17·73-s + 1.12·79-s + 1/9·81-s + 0.987·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 58800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(58800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(469.520\)
Root analytic conductor: \(21.6684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{58800} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 58800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + 6 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 - 9 T + p T^{2} \)
61 \( 1 + 11 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.66164695584664, −13.85810054270271, −13.57611951221576, −13.24466625038606, −12.58868833532249, −12.25117108194315, −11.50665691880258, −10.80548400317879, −10.52008306007713, −10.11477671740435, −9.428875888736742, −8.676103454822080, −8.470213259170877, −7.958153569436100, −7.331996646761942, −6.698778800916852, −6.337449728421930, −5.297131978207608, −5.082810120395522, −4.411511869954018, −3.628409916621430, −3.099217960982763, −2.310266081986899, −2.065871147385158, −0.8920061836803146, 0, 0.8920061836803146, 2.065871147385158, 2.310266081986899, 3.099217960982763, 3.628409916621430, 4.411511869954018, 5.082810120395522, 5.297131978207608, 6.337449728421930, 6.698778800916852, 7.331996646761942, 7.958153569436100, 8.470213259170877, 8.676103454822080, 9.428875888736742, 10.11477671740435, 10.52008306007713, 10.80548400317879, 11.50665691880258, 12.25117108194315, 12.58868833532249, 13.24466625038606, 13.57611951221576, 13.85810054270271, 14.66164695584664

Graph of the $Z$-function along the critical line