Properties

Label 2-58800-1.1-c1-0-0
Degree $2$
Conductor $58800$
Sign $1$
Analytic cond. $469.520$
Root an. cond. $21.6684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 2·11-s − 3·13-s − 5·17-s + 4·19-s − 5·23-s − 27-s + 9·29-s − 5·31-s + 2·33-s − 10·37-s + 3·39-s − 41-s + 3·43-s − 12·47-s + 5·51-s − 11·53-s − 4·57-s + 5·59-s − 9·61-s − 4·67-s + 5·69-s + 4·71-s − 6·73-s − 14·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 0.603·11-s − 0.832·13-s − 1.21·17-s + 0.917·19-s − 1.04·23-s − 0.192·27-s + 1.67·29-s − 0.898·31-s + 0.348·33-s − 1.64·37-s + 0.480·39-s − 0.156·41-s + 0.457·43-s − 1.75·47-s + 0.700·51-s − 1.51·53-s − 0.529·57-s + 0.650·59-s − 1.15·61-s − 0.488·67-s + 0.601·69-s + 0.474·71-s − 0.702·73-s − 1.57·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 58800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(58800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(469.520\)
Root analytic conductor: \(21.6684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 58800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2760314881\)
\(L(\frac12)\) \(\approx\) \(0.2760314881\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + 2 T + p T^{2} \)
13 \( 1 + 3 T + p T^{2} \)
17 \( 1 + 5 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 5 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + T + p T^{2} \)
43 \( 1 - 3 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 11 T + p T^{2} \)
59 \( 1 - 5 T + p T^{2} \)
61 \( 1 + 9 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 + 5 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.22301141913599, −13.88316733584741, −13.30224151797391, −12.69584662129272, −12.33059447229120, −11.80531209488317, −11.30821314072776, −10.80535235426802, −10.17205686611789, −9.903506245618586, −9.270831632098775, −8.559434587519221, −8.163917540522951, −7.321281457573941, −7.139985760005285, −6.331920959921979, −5.949082263087836, −5.061332056436096, −4.888924159785384, −4.229242230649509, −3.382774714235262, −2.789614659421227, −2.019116079175144, −1.384745889462398, −0.1830062427902622, 0.1830062427902622, 1.384745889462398, 2.019116079175144, 2.789614659421227, 3.382774714235262, 4.229242230649509, 4.888924159785384, 5.061332056436096, 5.949082263087836, 6.331920959921979, 7.139985760005285, 7.321281457573941, 8.163917540522951, 8.559434587519221, 9.270831632098775, 9.903506245618586, 10.17205686611789, 10.80535235426802, 11.30821314072776, 11.80531209488317, 12.33059447229120, 12.69584662129272, 13.30224151797391, 13.88316733584741, 14.22301141913599

Graph of the $Z$-function along the critical line