| L(s) = 1 | + (0.287 − 1.38i)2-s + (1.25 + 1.19i)3-s + (−1.83 − 0.796i)4-s + (−1.08 + 0.626i)5-s + (2.01 − 1.39i)6-s + (−1.63 + 2.31i)8-s + (0.148 + 2.99i)9-s + (0.555 + 1.68i)10-s + (−2.52 + 4.38i)11-s + (−1.35 − 3.18i)12-s + 4.41·13-s + (−2.11 − 0.509i)15-s + (2.73 + 2.92i)16-s + (5.06 + 2.92i)17-s + (4.19 + 0.656i)18-s + (1.32 − 0.765i)19-s + ⋯ |
| L(s) = 1 | + (0.203 − 0.979i)2-s + (0.724 + 0.689i)3-s + (−0.917 − 0.398i)4-s + (−0.485 + 0.280i)5-s + (0.822 − 0.569i)6-s + (−0.576 + 0.817i)8-s + (0.0494 + 0.998i)9-s + (0.175 + 0.532i)10-s + (−0.762 + 1.32i)11-s + (−0.389 − 0.920i)12-s + 1.22·13-s + (−0.544 − 0.131i)15-s + (0.682 + 0.730i)16-s + (1.22 + 0.709i)17-s + (0.987 + 0.154i)18-s + (0.304 − 0.175i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.890 - 0.455i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.890 - 0.455i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.56233 + 0.376652i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.56233 + 0.376652i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.287 + 1.38i)T \) |
| 3 | \( 1 + (-1.25 - 1.19i)T \) |
| 7 | \( 1 \) |
| good | 5 | \( 1 + (1.08 - 0.626i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.52 - 4.38i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 4.41T + 13T^{2} \) |
| 17 | \( 1 + (-5.06 - 2.92i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.32 + 0.765i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.156 + 0.271i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 5.53iT - 29T^{2} \) |
| 31 | \( 1 + (4.24 + 2.44i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.66 - 4.62i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 1.97iT - 41T^{2} \) |
| 43 | \( 1 - 3.18iT - 43T^{2} \) |
| 47 | \( 1 + (-5.74 - 9.95i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (11.0 + 6.39i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.98 + 6.89i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.151 - 0.262i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (9.13 + 5.27i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 4.53T + 71T^{2} \) |
| 73 | \( 1 + (0.707 - 1.22i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6 + 3.46i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6.78T + 83T^{2} \) |
| 89 | \( 1 + (-4.15 + 2.39i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 13.6T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75192727843746753778870314440, −9.908124272250591899618636848442, −9.379347754814333105410348714735, −8.161744234461463486745138448265, −7.66153762154554294238976166305, −5.88239371780436108577028027519, −4.78696443250480941453117548012, −3.87970246493990340635427025977, −3.09500689917761502252400405571, −1.80657526782600554068009099074,
0.843849547116595353315506262451, 3.12481152502500309771636484281, 3.80785475313860001409298469895, 5.37488178874503707766124213169, 6.09511915535203050927366831395, 7.25695857785756841433399749948, 7.947159856090734256750407162320, 8.568328454915931144657509049863, 9.250931691449822368562377808681, 10.55435334836293517692918811950