L(s) = 1 | + (−13.5 + 23.3i)3-s + (50 + 86.6i)5-s + (−364.5 − 631. i)9-s + (−1.38e3 + 2.40e3i)11-s + 3.29e3·13-s − 2.70e3·15-s + (2.95e3 − 5.10e3i)17-s + (3.32e3 + 5.75e3i)19-s + (−991 − 1.71e3i)23-s + (3.40e4 − 5.89e4i)25-s + 1.96e4·27-s − 2.08e5·29-s + (−5.88e4 + 1.02e5i)31-s + (−3.74e4 − 6.48e4i)33-s + (1.67e5 + 2.90e5i)37-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (0.178 + 0.309i)5-s + (−0.166 − 0.288i)9-s + (−0.314 + 0.544i)11-s + 0.415·13-s − 0.206·15-s + (0.145 − 0.252i)17-s + (0.111 + 0.192i)19-s + (−0.0169 − 0.0294i)23-s + (0.435 − 0.755i)25-s + 0.192·27-s − 1.58·29-s + (−0.355 + 0.615i)31-s + (−0.181 − 0.314i)33-s + (0.544 + 0.943i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.266 + 0.963i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.8401088418\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8401088418\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (13.5 - 23.3i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-50 - 86.6i)T + (-3.90e4 + 6.76e4i)T^{2} \) |
| 11 | \( 1 + (1.38e3 - 2.40e3i)T + (-9.74e6 - 1.68e7i)T^{2} \) |
| 13 | \( 1 - 3.29e3T + 6.27e7T^{2} \) |
| 17 | \( 1 + (-2.95e3 + 5.10e3i)T + (-2.05e8 - 3.55e8i)T^{2} \) |
| 19 | \( 1 + (-3.32e3 - 5.75e3i)T + (-4.46e8 + 7.74e8i)T^{2} \) |
| 23 | \( 1 + (991 + 1.71e3i)T + (-1.70e9 + 2.94e9i)T^{2} \) |
| 29 | \( 1 + 2.08e5T + 1.72e10T^{2} \) |
| 31 | \( 1 + (5.88e4 - 1.02e5i)T + (-1.37e10 - 2.38e10i)T^{2} \) |
| 37 | \( 1 + (-1.67e5 - 2.90e5i)T + (-4.74e10 + 8.22e10i)T^{2} \) |
| 41 | \( 1 - 2.65e5T + 1.94e11T^{2} \) |
| 43 | \( 1 + 9.32e4T + 2.71e11T^{2} \) |
| 47 | \( 1 + (3.28e5 + 5.69e5i)T + (-2.53e11 + 4.38e11i)T^{2} \) |
| 53 | \( 1 + (-3.04e5 + 5.27e5i)T + (-5.87e11 - 1.01e12i)T^{2} \) |
| 59 | \( 1 + (2.68e5 - 4.64e5i)T + (-1.24e12 - 2.15e12i)T^{2} \) |
| 61 | \( 1 + (8.98e5 + 1.55e6i)T + (-1.57e12 + 2.72e12i)T^{2} \) |
| 67 | \( 1 + (1.06e6 - 1.83e6i)T + (-3.03e12 - 5.24e12i)T^{2} \) |
| 71 | \( 1 + 1.19e6T + 9.09e12T^{2} \) |
| 73 | \( 1 + (-5.28e5 + 9.14e5i)T + (-5.52e12 - 9.56e12i)T^{2} \) |
| 79 | \( 1 + (4.99e5 + 8.64e5i)T + (-9.60e12 + 1.66e13i)T^{2} \) |
| 83 | \( 1 + 3.89e6T + 2.71e13T^{2} \) |
| 89 | \( 1 + (2.31e6 + 4.00e6i)T + (-2.21e13 + 3.83e13i)T^{2} \) |
| 97 | \( 1 + 1.52e7T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.551411826891306780185316463456, −8.604843249529118152959549252229, −7.57297566452261101417589658592, −6.64045127505009936824922357413, −5.70192651378745701886026809143, −4.81690428332309209732710504716, −3.79896731274207325923940704881, −2.75953644870299070314037985590, −1.55378111029448780272211417178, −0.18476175252631312872971162899,
0.891683237118341245798690430846, 1.85454728327641475132521290061, 3.06666647050749870565052171681, 4.21334224100799842892188565284, 5.47837886231782694960400297779, 5.96875205420502868933299406361, 7.16429055439546099825299757029, 7.900890635106704291208135095297, 8.885573298601572193733504077793, 9.625381915387839157045186062781