L(s) = 1 | + (−0.5 + 0.866i)3-s + (−1 − 1.73i)5-s + (−0.499 − 0.866i)9-s + (−1 + 1.73i)11-s + 3·13-s + 1.99·15-s + (4 − 6.92i)17-s + (−0.5 − 0.866i)19-s + (−4 − 6.92i)23-s + (0.500 − 0.866i)25-s + 0.999·27-s + 4·29-s + (1.5 − 2.59i)31-s + (−0.999 − 1.73i)33-s + (0.5 + 0.866i)37-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (−0.447 − 0.774i)5-s + (−0.166 − 0.288i)9-s + (−0.301 + 0.522i)11-s + 0.832·13-s + 0.516·15-s + (0.970 − 1.68i)17-s + (−0.114 − 0.198i)19-s + (−0.834 − 1.44i)23-s + (0.100 − 0.173i)25-s + 0.192·27-s + 0.742·29-s + (0.269 − 0.466i)31-s + (−0.174 − 0.301i)33-s + (0.0821 + 0.142i)37-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)(0.605+0.795i)Λ(2−s)
Λ(s)=(=(588s/2ΓC(s+1/2)L(s)(0.605+0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
588
= 22⋅3⋅72
|
Sign: |
0.605+0.795i
|
Analytic conductor: |
4.69520 |
Root analytic conductor: |
2.16684 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ588(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 588, ( :1/2), 0.605+0.795i)
|
Particular Values
L(1) |
≈ |
1.00696−0.499178i |
L(21) |
≈ |
1.00696−0.499178i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.5−0.866i)T |
| 7 | 1 |
good | 5 | 1+(1+1.73i)T+(−2.5+4.33i)T2 |
| 11 | 1+(1−1.73i)T+(−5.5−9.52i)T2 |
| 13 | 1−3T+13T2 |
| 17 | 1+(−4+6.92i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.5+0.866i)T+(−9.5+16.4i)T2 |
| 23 | 1+(4+6.92i)T+(−11.5+19.9i)T2 |
| 29 | 1−4T+29T2 |
| 31 | 1+(−1.5+2.59i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−0.5−0.866i)T+(−18.5+32.0i)T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−11T+43T2 |
| 47 | 1+(−3−5.19i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−6+10.3i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−2+3.46i)T+(−29.5−51.0i)T2 |
| 61 | 1+(3+5.19i)T+(−30.5+52.8i)T2 |
| 67 | 1+(6.5−11.2i)T+(−33.5−58.0i)T2 |
| 71 | 1+10T+71T2 |
| 73 | 1+(5.5−9.52i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−1.5−2.59i)T+(−39.5+68.4i)T2 |
| 83 | 1+2T+83T2 |
| 89 | 1+(−44.5+77.0i)T2 |
| 97 | 1+10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.46581362455315820703270200404, −9.774325998618023450521222488917, −8.793829749877786594326541294749, −8.078314047019151047749279353773, −6.99022940396525788328374918806, −5.83681122472412503926110971329, −4.83450555496741839915063303491, −4.15554911104864310336645817503, −2.73572212186900775081370168887, −0.72500536789799164666846476553,
1.46196899898935132217137690139, 3.11440067935756924438277152789, 3.98277885183252021178572561827, 5.66878862298854949462179269936, 6.17381983040674805170905629738, 7.35687613609293183882966911755, 7.999192546505736906353541738593, 8.895836238776167463077657651039, 10.38655405434576491905132926398, 10.67474349052871886641334513973