Properties

Label 2-588-7.2-c3-0-3
Degree $2$
Conductor $588$
Sign $-0.991 - 0.126i$
Analytic cond. $34.6931$
Root an. cond. $5.89008$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.5 + 2.59i)3-s + (−2 + 3.46i)5-s + (−4.5 + 7.79i)9-s + (10 + 17.3i)11-s − 4·13-s − 12·15-s + (−12 − 20.7i)17-s + (−22 + 38.1i)19-s + (−36 + 62.3i)23-s + (54.5 + 94.3i)25-s − 27·27-s − 38·29-s + (−92 − 159. i)31-s + (−30.0 + 51.9i)33-s + (15 − 25.9i)37-s + ⋯
L(s)  = 1  + (0.288 + 0.499i)3-s + (−0.178 + 0.309i)5-s + (−0.166 + 0.288i)9-s + (0.274 + 0.474i)11-s − 0.0853·13-s − 0.206·15-s + (−0.171 − 0.296i)17-s + (−0.265 + 0.460i)19-s + (−0.326 + 0.565i)23-s + (0.435 + 0.755i)25-s − 0.192·27-s − 0.243·29-s + (−0.533 − 0.923i)31-s + (−0.158 + 0.274i)33-s + (0.0666 − 0.115i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $-0.991 - 0.126i$
Analytic conductor: \(34.6931\)
Root analytic conductor: \(5.89008\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{588} (373, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 588,\ (\ :3/2),\ -0.991 - 0.126i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9088050282\)
\(L(\frac12)\) \(\approx\) \(0.9088050282\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.5 - 2.59i)T \)
7 \( 1 \)
good5 \( 1 + (2 - 3.46i)T + (-62.5 - 108. i)T^{2} \)
11 \( 1 + (-10 - 17.3i)T + (-665.5 + 1.15e3i)T^{2} \)
13 \( 1 + 4T + 2.19e3T^{2} \)
17 \( 1 + (12 + 20.7i)T + (-2.45e3 + 4.25e3i)T^{2} \)
19 \( 1 + (22 - 38.1i)T + (-3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (36 - 62.3i)T + (-6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 + 38T + 2.43e4T^{2} \)
31 \( 1 + (92 + 159. i)T + (-1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (-15 + 25.9i)T + (-2.53e4 - 4.38e4i)T^{2} \)
41 \( 1 + 216T + 6.89e4T^{2} \)
43 \( 1 + 164T + 7.95e4T^{2} \)
47 \( 1 + (260 - 450. i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + (-73 - 126. i)T + (-7.44e4 + 1.28e5i)T^{2} \)
59 \( 1 + (230 + 398. i)T + (-1.02e5 + 1.77e5i)T^{2} \)
61 \( 1 + (314 - 543. i)T + (-1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (278 + 481. i)T + (-1.50e5 + 2.60e5i)T^{2} \)
71 \( 1 - 592T + 3.57e5T^{2} \)
73 \( 1 + (512 + 886. i)T + (-1.94e5 + 3.36e5i)T^{2} \)
79 \( 1 + (-52 + 90.0i)T + (-2.46e5 - 4.26e5i)T^{2} \)
83 \( 1 + 324T + 5.71e5T^{2} \)
89 \( 1 + (448 - 775. i)T + (-3.52e5 - 6.10e5i)T^{2} \)
97 \( 1 + 920T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.69796463689668568524506496322, −9.730072777810793752716103066760, −9.152337281683872213218539948756, −8.028641285827839899843377539766, −7.26128547048016974760607559497, −6.17938443561965556447615933278, −5.05388729976335712308901624423, −4.04498022636050785300350339547, −3.07410585793447393389747772279, −1.73220998272075380163213063418, 0.24657270150935342364167361983, 1.63085911624349848047001637523, 2.93317078867732140898268362989, 4.09685392771783319742378103557, 5.23184365901608696085862892931, 6.39978513444081223578266946413, 7.10973439886724360257590309703, 8.369918648103572214385891976285, 8.658687213917785721874352635237, 9.834085229446507368539555345567

Graph of the $Z$-function along the critical line