L(s) = 1 | + (−0.5 − 0.866i)3-s + (−1 + 1.73i)5-s + (−0.499 + 0.866i)9-s + (−1 − 1.73i)11-s + 3·13-s + 1.99·15-s + (4 + 6.92i)17-s + (−0.5 + 0.866i)19-s + (−4 + 6.92i)23-s + (0.500 + 0.866i)25-s + 0.999·27-s + 4·29-s + (1.5 + 2.59i)31-s + (−0.999 + 1.73i)33-s + (0.5 − 0.866i)37-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.447 + 0.774i)5-s + (−0.166 + 0.288i)9-s + (−0.301 − 0.522i)11-s + 0.832·13-s + 0.516·15-s + (0.970 + 1.68i)17-s + (−0.114 + 0.198i)19-s + (−0.834 + 1.44i)23-s + (0.100 + 0.173i)25-s + 0.192·27-s + 0.742·29-s + (0.269 + 0.466i)31-s + (−0.174 + 0.301i)33-s + (0.0821 − 0.142i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.00696 + 0.499178i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00696 + 0.499178i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (1 - 1.73i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1 + 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 3T + 13T^{2} \) |
| 17 | \( 1 + (-4 - 6.92i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (4 - 6.92i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 4T + 29T^{2} \) |
| 31 | \( 1 + (-1.5 - 2.59i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 - 11T + 43T^{2} \) |
| 47 | \( 1 + (-3 + 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6 - 10.3i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2 - 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3 - 5.19i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.5 + 11.2i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 10T + 71T^{2} \) |
| 73 | \( 1 + (5.5 + 9.52i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.5 + 2.59i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 2T + 83T^{2} \) |
| 89 | \( 1 + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 10T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.67474349052871886641334513973, −10.38655405434576491905132926398, −8.895836238776167463077657651039, −7.999192546505736906353541738593, −7.35687613609293183882966911755, −6.17381983040674805170905629738, −5.66878862298854949462179269936, −3.98277885183252021178572561827, −3.11440067935756924438277152789, −1.46196899898935132217137690139,
0.72500536789799164666846476553, 2.73572212186900775081370168887, 4.15554911104864310336645817503, 4.83450555496741839915063303491, 5.83681122472412503926110971329, 6.99022940396525788328374918806, 8.078314047019151047749279353773, 8.793829749877786594326541294749, 9.774325998618023450521222488917, 10.46581362455315820703270200404