Properties

Label 2-588-3.2-c0-0-1
Degree $2$
Conductor $588$
Sign $1$
Analytic cond. $0.293450$
Root an. cond. $0.541710$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 13-s − 19-s + 25-s + 27-s − 31-s − 37-s − 39-s − 43-s − 57-s + 2·61-s − 67-s − 73-s + 75-s − 79-s + 81-s − 93-s + 2·97-s − 103-s − 109-s − 111-s − 117-s + ⋯
L(s)  = 1  + 3-s + 9-s − 13-s − 19-s + 25-s + 27-s − 31-s − 37-s − 39-s − 43-s − 57-s + 2·61-s − 67-s − 73-s + 75-s − 79-s + 81-s − 93-s + 2·97-s − 103-s − 109-s − 111-s − 117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(0.293450\)
Root analytic conductor: \(0.541710\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{588} (197, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 588,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.203191104\)
\(L(\frac12)\) \(\approx\) \(1.203191104\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
good5 \( ( 1 - T )( 1 + T ) \)
11 \( ( 1 - T )( 1 + T ) \)
13 \( 1 + T + T^{2} \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( 1 + T + T^{2} \)
23 \( ( 1 - T )( 1 + T ) \)
29 \( ( 1 - T )( 1 + T ) \)
31 \( 1 + T + T^{2} \)
37 \( 1 + T + T^{2} \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( 1 + T + T^{2} \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )^{2} \)
67 \( 1 + T + T^{2} \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( 1 + T + T^{2} \)
79 \( 1 + T + T^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( ( 1 - T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.66179444964847131016268260418, −9.992304814917284726116447913179, −9.041261215796509979421627909881, −8.400122770178731149198343958187, −7.37835468379044894035559116671, −6.68546487276271598199087656551, −5.21020278778570492589089292909, −4.20249201282363993133386632534, −3.05186481588102742617886479608, −1.93605987703093487834817760007, 1.93605987703093487834817760007, 3.05186481588102742617886479608, 4.20249201282363993133386632534, 5.21020278778570492589089292909, 6.68546487276271598199087656551, 7.37835468379044894035559116671, 8.400122770178731149198343958187, 9.041261215796509979421627909881, 9.992304814917284726116447913179, 10.66179444964847131016268260418

Graph of the $Z$-function along the critical line